LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicagentsagentBaseSingleActionAgentplan
    Method●Since v1.0

    plan

    Given input, decided what to do.

    Copy
    plan(
      self,
      intermediate_steps: list[tuple[AgentAction, str]],
      callbacks: Callbacks = None,
      **kwargs: Any = {}
    ) -> AgentAction | AgentFinish

    Parameters

    NameTypeDescription
    intermediate_steps*list[tuple[AgentAction, str]]

    Steps the LLM has taken to date, along with observations.

    callbacksCallbacks
    Default:None

    Callbacks to run.

    **kwargsAny
    Default:{}

    User inputs.

    View source on GitHub