langchain-weaviate¶
Reference docs
This page contains reference documentation for Weaviate. See the docs for conceptual guides, tutorials, and examples on using Weaviate modules.
langchain_weaviate
¶
WeaviateVectorStore
¶
Bases: VectorStore
Weaviate vector store.
To use, you should have the weaviate-client python package installed.
Example
.. code-block:: python
import weaviate
from langchain_community.vectorstores import Weaviate
client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...)
weaviate = Weaviate(client, index_name, text_key)
| METHOD | DESCRIPTION |
|---|---|
get_by_ids |
Get documents by their IDs. |
aget_by_ids |
Async get documents by their IDs. |
adelete |
Async delete by vector ID or other criteria. |
aadd_texts |
Async run more texts through the embeddings and add to the |
add_documents |
Add or update documents in the |
aadd_documents |
Async run more documents through the embeddings and add to the |
search |
Return docs most similar to query using a specified search type. |
asearch |
Async return docs most similar to query using a specified search type. |
asimilarity_search_with_score |
Async run similarity search with distance. |
similarity_search_with_relevance_scores |
Return docs and relevance scores in the range |
asimilarity_search_with_relevance_scores |
Async return docs and relevance scores in the range |
asimilarity_search |
Async return docs most similar to query. |
similarity_search_by_vector |
Return docs most similar to embedding vector. |
asimilarity_search_by_vector |
Async return docs most similar to embedding vector. |
amax_marginal_relevance_search |
Async return docs selected using the maximal marginal relevance. |
amax_marginal_relevance_search_by_vector |
Async return docs selected using the maximal marginal relevance. |
from_documents |
Return |
afrom_documents |
Async return |
afrom_texts |
Async return |
as_retriever |
Return |
__init__ |
Initialize with Weaviate client. |
add_texts |
Upload texts with metadata (properties) to Weaviate. |
similarity_search |
Return docs most similar to query. |
max_marginal_relevance_search |
Return docs selected using the maximal marginal relevance. |
max_marginal_relevance_search_by_vector |
Return docs selected using the maximal marginal relevance. |
similarity_search_with_score |
Return list of documents most similar to the query |
from_texts |
Construct Weaviate wrapper from raw documents. |
delete |
Delete by vector IDs. |
get_by_ids
¶
Get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
| PARAMETER | DESCRIPTION |
|---|---|
ids
|
List of IDs to retrieve. |
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of |
aget_by_ids
async
¶
Async get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
| PARAMETER | DESCRIPTION |
|---|---|
ids
|
List of IDs to retrieve. |
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of |
adelete
async
¶
Async delete by vector ID or other criteria.
| PARAMETER | DESCRIPTION |
|---|---|
ids
|
List of IDs to delete. If |
**kwargs
|
Other keyword arguments that subclasses might use.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
bool | None
|
|
aadd_texts
async
¶
aadd_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any,
) -> list[str]
Async run more texts through the embeddings and add to the VectorStore.
| PARAMETER | DESCRIPTION |
|---|---|
texts
|
Iterable of strings to add to the |
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list |
**kwargs
|
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[str]
|
List of IDs from adding the texts into the |
| RAISES | DESCRIPTION |
|---|---|
ValueError
|
If the number of metadatas does not match the number of texts. |
ValueError
|
If the number of IDs does not match the number of texts. |
add_documents
¶
Add or update documents in the VectorStore.
| PARAMETER | DESCRIPTION |
|---|---|
documents
|
Documents to add to the |
**kwargs
|
Additional keyword arguments. If kwargs contains IDs and documents contain ids, the IDs in the kwargs will receive precedence.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[str]
|
List of IDs of the added texts. |
aadd_documents
async
¶
search
¶
Return docs most similar to query using a specified search type.
| PARAMETER | DESCRIPTION |
|---|---|
query
|
Input text.
TYPE:
|
search_type
|
Type of search to perform. Can be
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of |
| RAISES | DESCRIPTION |
|---|---|
ValueError
|
If |
asearch
async
¶
Async return docs most similar to query using a specified search type.
| PARAMETER | DESCRIPTION |
|---|---|
query
|
Input text.
TYPE:
|
search_type
|
Type of search to perform. Can be
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of |
| RAISES | DESCRIPTION |
|---|---|
ValueError
|
If |
asimilarity_search_with_score
async
¶
similarity_search_with_relevance_scores
¶
similarity_search_with_relevance_scores(
query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
| PARAMETER | DESCRIPTION |
|---|---|
query
|
Input text.
TYPE:
|
k
|
Number of
TYPE:
|
**kwargs
|
kwargs to be passed to similarity search. Should include
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[tuple[Document, float]]
|
List of tuples of |
asimilarity_search_with_relevance_scores
async
¶
asimilarity_search_with_relevance_scores(
query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]
Async return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
| PARAMETER | DESCRIPTION |
|---|---|
query
|
Input text.
TYPE:
|
k
|
Number of
TYPE:
|
**kwargs
|
kwargs to be passed to similarity search. Should include
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[tuple[Document, float]]
|
List of tuples of |
asimilarity_search
async
¶
Async return docs most similar to query.
| PARAMETER | DESCRIPTION |
|---|---|
query
|
Input text.
TYPE:
|
k
|
Number of
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of |
similarity_search_by_vector
¶
Return docs most similar to embedding vector.
| PARAMETER | DESCRIPTION |
|---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of |
asimilarity_search_by_vector
async
¶
Async return docs most similar to embedding vector.
| PARAMETER | DESCRIPTION |
|---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of |
amax_marginal_relevance_search
async
¶
amax_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
| PARAMETER | DESCRIPTION |
|---|---|
query
|
Text to look up documents similar to.
TYPE:
|
k
|
Number of
TYPE:
|
fetch_k
|
Number of
TYPE:
|
lambda_mult
|
Number between
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of |
amax_marginal_relevance_search_by_vector
async
¶
amax_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> list[Document]
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
| PARAMETER | DESCRIPTION |
|---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of
TYPE:
|
fetch_k
|
Number of
TYPE:
|
lambda_mult
|
Number between
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of |
from_documents
classmethod
¶
from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) -> Self
Return VectorStore initialized from documents and embeddings.
| PARAMETER | DESCRIPTION |
|---|---|
documents
|
List of |
embedding
|
Embedding function to use.
TYPE:
|
**kwargs
|
Additional keyword arguments.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Self
|
|
afrom_documents
async
classmethod
¶
afrom_documents(
documents: list[Document], embedding: Embeddings, **kwargs: Any
) -> Self
Async return VectorStore initialized from documents and embeddings.
| PARAMETER | DESCRIPTION |
|---|---|
documents
|
List of |
embedding
|
Embedding function to use.
TYPE:
|
**kwargs
|
Additional keyword arguments.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Self
|
|
afrom_texts
async
classmethod
¶
afrom_texts(
texts: list[str],
embedding: Embeddings,
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any,
) -> Self
Async return VectorStore initialized from texts and embeddings.
| PARAMETER | DESCRIPTION |
|---|---|
texts
|
Texts to add to the |
embedding
|
Embedding function to use.
TYPE:
|
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list of IDs associated with the texts. |
**kwargs
|
Additional keyword arguments.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Self
|
|
as_retriever
¶
as_retriever(**kwargs: Any) -> VectorStoreRetriever
Return VectorStoreRetriever initialized from this VectorStore.
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs
|
Keyword arguments to pass to the search function. Can include:
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
VectorStoreRetriever
|
Retriever class for |
Examples:
# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
search_type="mmr", search_kwargs={"k": 6, "lambda_mult": 0.25}
)
# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 50})
# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.8},
)
# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={"k": 1})
# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
search_kwargs={"filter": {"paper_title": "GPT-4 Technical Report"}}
)
__init__
¶
__init__(
client: WeaviateClient,
index_name: str | None,
text_key: str,
embedding: Embeddings | None = None,
attributes: list[str] | None = None,
relevance_score_fn: Callable[[float], float] | None = _default_score_normalizer,
use_multi_tenancy: bool = False,
)
Initialize with Weaviate client.
add_texts
¶
add_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
tenant: str | None = None,
**kwargs: Any,
) -> list[str]
Upload texts with metadata (properties) to Weaviate.
similarity_search
¶
Return docs most similar to query.
| PARAMETER | DESCRIPTION |
|---|---|
query
|
Text to look up documents similar to.
TYPE:
|
k
|
Number of Documents to return. Defaults to 4.
TYPE:
|
**kwargs
|
Additional keyword arguments will be passed to the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of Documents most similar to the query. |
max_marginal_relevance_search
¶
max_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
| PARAMETER | DESCRIPTION |
|---|---|
query
|
Text to look up documents similar to.
TYPE:
|
k
|
Number of Documents to return. Defaults to 4.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of Documents selected by maximal marginal relevance. |
max_marginal_relevance_search_by_vector
¶
max_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> list[Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
| PARAMETER | DESCRIPTION |
|---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of Documents to return. Defaults to 4.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Document]
|
List of Documents selected by maximal marginal relevance. |
similarity_search_with_score
¶
similarity_search_with_score(
query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]
Return list of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity.
from_texts
classmethod
¶
from_texts(
texts: list[str],
embedding: Embeddings | None,
metadatas: list[dict] | None = None,
*,
tenant: str | None = None,
client: WeaviateClient | None = None,
index_name: str | None = None,
text_key: str = "text",
relevance_score_fn: Callable[[float], float] | None = _default_score_normalizer,
**kwargs: Any,
) -> WeaviateVectorStore
Construct Weaviate wrapper from raw documents.
This is a user-friendly interface that
- Embeds documents.
- Creates a new index for the embeddings in the Weaviate instance.
- Adds the documents to the newly created Weaviate index.
This is intended to be a quick way to get started.
| PARAMETER | DESCRIPTION |
|---|---|
texts
|
Texts to add to vector store. |
embedding
|
Text embedding model to use.
TYPE:
|
client
|
weaviate.Client to use.
TYPE:
|
metadatas
|
Metadata associated with each text. |
tenant
|
The tenant name. Defaults to None.
TYPE:
|
index_name
|
Index name.
TYPE:
|
text_key
|
Key to use for uploading/retrieving text to/from vectorstore.
TYPE:
|
relevance_score_fn
|
Function for converting whatever distance function the vector store uses to a relevance score, which is a normalized similarity score (0 means dissimilar, 1 means similar).
TYPE:
|
**kwargs
|
Additional named parameters to pass to
TYPE:
|
Example
.. code-block:: python
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Weaviate
embeddings = OpenAIEmbeddings()
weaviate = Weaviate.from_texts(
texts,
embeddings,
client=client
)