Skip to content

langchain-tavily

PyPI - Version PyPI - License PyPI - Downloads

Warning

These docs are built from the langchain-tavily repo and have not been verified for accuracy by the LangChain team.

langchain_tavily

TavilyCrawl

Bases: BaseTool

Tool that sends requests to the Tavily Crawl API with dynamically settable parameters.

METHOD DESCRIPTION
get_name

Get the name of the Runnable.

get_input_schema

The tool's input schema.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a Pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a Pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe Runnable objects.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

invoke

Transform a single input into an output.

ainvoke

Transform a single input into an output.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

stream

Default implementation of stream, which calls invoke.

astream

Default implementation of astream, which calls ainvoke.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

is_lc_serializable

Is this class serializable?

get_lc_namespace

Get the namespace of the LangChain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnable objects that can be set at runtime.

__init_subclass__

Validate the tool class definition during subclass creation.

run

Run the tool.

arun

Run the tool asynchronously.

__init__

Initialize the tool.

InputType property

InputType: type[Input]

Input type.

The type of input this Runnable accepts specified as a type annotation.

RAISES DESCRIPTION
TypeError

If the input type cannot be inferred.

OutputType property

OutputType: type[Output]

Output Type.

The type of output this Runnable produces specified as a type annotation.

RAISES DESCRIPTION
TypeError

If the output type cannot be inferred.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a Pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a Pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_secrets property

lc_secrets: dict[str, str]

A map of constructor argument names to secret ids.

For example, {"openai_api_key": "OPENAI_API_KEY"}

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

Default is an empty dictionary.

return_direct class-attribute instance-attribute

return_direct: bool = False

Whether to return the tool's output directly.

Setting this to True means that after the tool is called, the AgentExecutor will stop looping.

verbose class-attribute instance-attribute

verbose: bool = False

Whether to log the tool's progress.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to be called during tool execution.

tags class-attribute instance-attribute

tags: list[str] | None = None

Optional list of tags associated with the tool. These tags will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = None

Optional metadata associated with the tool. This metadata will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

handle_validation_error class-attribute instance-attribute

handle_validation_error: (
    bool | str | Callable[[ValidationError | ValidationError], str] | None
) = False

Handle the content of the ValidationError thrown.

response_format class-attribute instance-attribute

response_format: Literal['content', 'content_and_artifact'] = 'content'

The tool response format.

If "content" then the output of the tool is interpreted as the contents of a ToolMessage. If "content_and_artifact" then the output is expected to be a two-tuple corresponding to the (content, artifact) of a ToolMessage.

is_single_input property

is_single_input: bool

Check if the tool accepts only a single input argument.

RETURNS DESCRIPTION
bool

True if the tool has only one input argument, False otherwise.

args property

args: dict

Get the tool's input arguments schema.

RETURNS DESCRIPTION
dict

Dictionary containing the tool's argument properties.

tool_call_schema property

tool_call_schema: ArgsSchema

Get the schema for tool calls, excluding injected arguments.

RETURNS DESCRIPTION
ArgsSchema

The schema that should be used for tool calls from language models.

name class-attribute instance-attribute

name: str = 'tavily_crawl'

The unique name of the tool that clearly communicates its purpose.

description class-attribute instance-attribute

description: str = "A powerful web crawler that initiates a structured web crawl starting from a specified \n        base URL. The crawler uses a BFS Depth: refering to the number of link hops from the root URL. \n        A page directly linked from the root is at BFS depth 1, regardless of its URL structure.\n        You can control how deep and wide it goes, and guide it to focus on specific sections of the site.\n        "

Used to tell the model how/when/why to use the tool.

You can provide few-shot examples as a part of the description.

args_schema class-attribute instance-attribute

args_schema: Type[BaseModel] = TavilyCrawlInput

Pydantic model class to validate and parse the tool's input arguments.

Args schema should be either:

  • A subclass of pydantic.BaseModel.
  • A subclass of pydantic.v1.BaseModel if accessing v1 namespace in pydantic 2
  • a JSON schema dict

handle_tool_error class-attribute instance-attribute

handle_tool_error: bool = True

Handle the content of the ToolException thrown.

max_depth class-attribute instance-attribute

max_depth: Optional[int] = None

Max depth of the crawl. Defines how far from the base URL the crawler can explore.

max_depth must be greater than 0

default is 1

max_breadth class-attribute instance-attribute

max_breadth: Optional[int] = None

The maximum number of links to follow per level of the tree (i.e., per page).

max_breadth must be greater than 0

default is 20

limit class-attribute instance-attribute

limit: Optional[int] = None

Total number of links the crawler will process before stopping.

limit must be greater than 0

default is 50

instructions class-attribute instance-attribute

instructions: Optional[str] = None

Natural language instructions for the crawler.

ex. "Python SDK"

select_paths class-attribute instance-attribute

select_paths: Optional[List[str]] = None

Regex patterns to select only URLs with specific path patterns.

ex. ["/api/v1.*"]

select_domains class-attribute instance-attribute

select_domains: Optional[List[str]] = None

Regex patterns to select only URLs from specific domains or subdomains.

ex. ["^docs.example.com$"]

exclude_paths class-attribute instance-attribute

exclude_paths: Optional[List[str]] = None

Regex patterns to exclude URLs with specific path patterns ex. [/private/., /admin/.]

exclude_domains class-attribute instance-attribute

exclude_domains: Optional[List[str]] = None

Regex patterns to exclude specific domains or subdomains from crawling ex. [^private.example.com$]

allow_external class-attribute instance-attribute

allow_external: Optional[bool] = None

Whether to allow following links that go to external domains.

default is False

include_images class-attribute instance-attribute

include_images: Optional[bool] = None

Whether to include images in the crawl results.

default is False

categories class-attribute instance-attribute

categories: Optional[
    List[
        Literal[
            "Careers",
            "Blogs",
            "Documentation",
            "About",
            "Pricing",
            "Community",
            "Developers",
            "Contact",
            "Media",
        ]
    ]
] = None

Filter URLs using predefined categories like 'Documentation', 'Blogs', etc.

extract_depth class-attribute instance-attribute

extract_depth: Optional[Literal['basic', 'advanced']] = None

Advanced extraction retrieves more data, including tables and embedded content, with higher success but may increase latency.

default is basic

format class-attribute instance-attribute

format: Optional[str] = None

The format of the extracted web page content. markdown returns content in markdown format. text returns plain text and may increase latency.

default is markdown

include_favicon class-attribute instance-attribute

include_favicon: Optional[bool] = None

Whether to include the favicon URL for each result.

Default is False.

get_name

get_name(suffix: str | None = None, *, name: str | None = None) -> str

Get the name of the Runnable.

PARAMETER DESCRIPTION
suffix

An optional suffix to append to the name.

TYPE: str | None DEFAULT: None

name

An optional name to use instead of the Runnable's name.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
str

The name of the Runnable.

get_input_schema

get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]

The tool's input schema.

PARAMETER DESCRIPTION
config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

The input schema for the tool.

get_input_jsonschema

get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]

Get a Pydantic model that can be used to validate output to the Runnable.

Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(*, include: Sequence[str] | None = None) -> type[BaseModel]

The type of config this Runnable accepts specified as a Pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(*, include: Sequence[str] | None = None) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: Runnable[Any, Other]
    | Callable[[Iterator[Any]], Iterator[Other]]
    | Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
    | Callable[[Any], Other]
    | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: Runnable[Other, Any]
    | Callable[[Iterator[Other]], Iterator[Any]]
    | Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
    | Callable[[Other], Any]
    | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe Runnable objects.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
PARAMETER DESCRIPTION
*others

Other Runnable or Runnable-like objects to compose

TYPE: Runnable[Any, Other] | Callable[[Any], Other] DEFAULT: ()

name

An optional name for the resulting RunnableSequence.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(keys: str | list[str]) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick a single key:

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]

Pick a list of keys:

from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
PARAMETER DESCRIPTION
keys

A key or list of keys to pick from the output dict.

TYPE: str | list[str]

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

a new Runnable.

assign

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | model | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | model)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
PARAMETER DESCRIPTION
**kwargs

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

TYPE: Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

A new Runnable.

invoke

invoke(
    input: str | dict | ToolCall, config: RunnableConfig | None = None, **kwargs: Any
) -> Any

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

ainvoke async

ainvoke(
    input: str | dict | ToolCall, config: RunnableConfig | None = None, **kwargs: Any
) -> Any

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

batch

batch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

stream

stream(
    input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Default implementation of stream, which calls invoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

astream async

astream(
    input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> AsyncIterator[Output]

Default implementation of astream, which calls ainvoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

diff

Whether to yield diffs between each step or the current state.

TYPE: bool DEFAULT: True

with_streamed_output_list

Whether to yield the streamed_output list.

TYPE: bool DEFAULT: True

include_names

Only include logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvent that provide real-time information about the progress of the Runnable, including StreamEvent from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: The name of the Runnable that generated the event.
  • run_id: Randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: The tags of the Runnable that generated the event.
  • metadata: The metadata of the Runnable that generated the event.
  • data: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

event name chunk input output
on_chat_model_start '[model name]' {"messages": [[SystemMessage, HumanMessage]]}
on_chat_model_stream '[model name]' AIMessageChunk(content="hello")
on_chat_model_end '[model name]' {"messages": [[SystemMessage, HumanMessage]]} AIMessageChunk(content="hello world")
on_llm_start '[model name]' {'input': 'hello'}
on_llm_stream '[model name]' 'Hello'
on_llm_end '[model name]' 'Hello human!'
on_chain_start 'format_docs'
on_chain_stream 'format_docs' 'hello world!, goodbye world!'
on_chain_end 'format_docs' [Document(...)] 'hello world!, goodbye world!'
on_tool_start 'some_tool' {"x": 1, "y": "2"}
on_tool_end 'some_tool' {"x": 1, "y": "2"}
on_retriever_start '[retriever name]' {"query": "hello"}
on_retriever_end '[retriever name]' {"query": "hello"} [Document(...), ..]
on_prompt_start '[template_name]' {"question": "hello"}
on_prompt_end '[template_name]' {"question": "hello"} ChatPromptValue(messages: [SystemMessage, ...])

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

Attribute Type Description
name str A user defined name for the event.
data Any The data associated with the event. This can be anything, though we suggest making it JSON serializable.

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

For instance:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

version

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

TYPE: Literal['v1', 'v2'] DEFAULT: 'v2'

include_names

Only include events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[StreamEvent]

An async stream of StreamEvent.

RAISES DESCRIPTION
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An iterator of inputs to the Runnable.

TYPE: Iterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None,
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An async iterator of inputs to the Runnable.

TYPE: AsyncIterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

PARAMETER DESCRIPTION
**kwargs

The arguments to bind to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

model = ChatOllama(model="llama3.1")

# Without bind
chain = model | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
config

The config to bind to the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
    on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
    on_error: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called before the Runnable starts running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_end

Called after the Runnable finishes running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_error

Called if the Runnable throws an error, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called asynchronously before the Runnable starts running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_end

Called asynchronously after the Runnable finishes running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_error

Called asynchronously if the Runnable throws an error, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
input_type

The input type to bind to the Runnable.

TYPE: type[Input] | None DEFAULT: None

output_type

The output type to bind to the Runnable.

TYPE: type[Output] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: ExponentialJitterParams | None = None,
    stop_after_attempt: int = 3,
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

PARAMETER DESCRIPTION
retry_if_exception_type

A tuple of exception types to retry on.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

wait_exponential_jitter

Whether to add jitter to the wait time between retries.

TYPE: bool DEFAULT: True

stop_after_attempt

The maximum number of attempts to make before giving up.

TYPE: int DEFAULT: 3

exponential_jitter_params

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

TYPE: ExponentialJitterParams | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

RETURNS DESCRIPTION
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
    exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar
PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None,
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

PARAMETER DESCRIPTION
args_schema

The schema for the tool.

TYPE: type[BaseModel] | None DEFAULT: None

name

The name of the tool.

TYPE: str | None DEFAULT: None

description

The description of the tool.

TYPE: str | None DEFAULT: None

arg_types

A dictionary of argument names to types.

TYPE: dict[str, type] | None DEFAULT: None

RETURNS DESCRIPTION
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

RETURNS DESCRIPTION
bool

Whether the class is serializable. Default is False.

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the LangChain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

RETURNS DESCRIPTION
list[str]

The namespace.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> SerializedConstructor | SerializedNotImplemented

Serialize the Runnable to JSON.

RETURNS DESCRIPTION
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

RETURNS DESCRIPTION
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

PARAMETER DESCRIPTION
**kwargs

A dictionary of ConfigurableField instances to configure.

TYPE: AnyConfigurableField DEFAULT: {}

RAISES DESCRIPTION
ValueError

If a configuration key is not found in the Runnable.

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnable objects that can be set at runtime.

PARAMETER DESCRIPTION
which

The ConfigurableField instance that will be used to select the alternative.

TYPE: ConfigurableField

default_key

The default key to use if no alternative is selected.

TYPE: str DEFAULT: 'default'

prefix_keys

Whether to prefix the keys with the ConfigurableField id.

TYPE: bool DEFAULT: False

**kwargs

A dictionary of keys to Runnable instances or callables that return Runnable instances.

TYPE: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

__init_subclass__

__init_subclass__(**kwargs: Any) -> None

Validate the tool class definition during subclass creation.

PARAMETER DESCRIPTION
**kwargs

Additional keyword arguments passed to the parent class.

TYPE: Any DEFAULT: {}

RAISES DESCRIPTION
SchemaAnnotationError

If args_schema has incorrect type annotation.

run

run(
    tool_input: str | dict[str, Any],
    verbose: bool | None = None,
    start_color: str | None = "green",
    color: str | None = "green",
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    config: RunnableConfig | None = None,
    tool_call_id: str | None = None,
    **kwargs: Any,
) -> Any

Run the tool.

PARAMETER DESCRIPTION
tool_input

The input to the tool.

TYPE: str | dict[str, Any]

verbose

Whether to log the tool's progress.

TYPE: bool | None DEFAULT: None

start_color

The color to use when starting the tool.

TYPE: str | None DEFAULT: 'green'

color

The color to use when ending the tool.

TYPE: str | None DEFAULT: 'green'

callbacks

Callbacks to be called during tool execution.

TYPE: Callbacks DEFAULT: None

tags

Optional list of tags associated with the tool.

TYPE: list[str] | None DEFAULT: None

metadata

Optional metadata associated with the tool.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The id of the run.

TYPE: UUID | None DEFAULT: None

config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

tool_call_id

The id of the tool call.

TYPE: str | None DEFAULT: None

**kwargs

Keyword arguments to be passed to tool callbacks (event handler)

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Any

The output of the tool.

RAISES DESCRIPTION
ToolException

If an error occurs during tool execution.

arun async

arun(
    tool_input: str | dict,
    verbose: bool | None = None,
    start_color: str | None = "green",
    color: str | None = "green",
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    config: RunnableConfig | None = None,
    tool_call_id: str | None = None,
    **kwargs: Any,
) -> Any

Run the tool asynchronously.

PARAMETER DESCRIPTION
tool_input

The input to the tool.

TYPE: str | dict

verbose

Whether to log the tool's progress.

TYPE: bool | None DEFAULT: None

start_color

The color to use when starting the tool.

TYPE: str | None DEFAULT: 'green'

color

The color to use when ending the tool.

TYPE: str | None DEFAULT: 'green'

callbacks

Callbacks to be called during tool execution.

TYPE: Callbacks DEFAULT: None

tags

Optional list of tags associated with the tool.

TYPE: list[str] | None DEFAULT: None

metadata

Optional metadata associated with the tool.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The id of the run.

TYPE: UUID | None DEFAULT: None

config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

tool_call_id

The id of the tool call.

TYPE: str | None DEFAULT: None

**kwargs

Keyword arguments to be passed to tool callbacks

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Any

The output of the tool.

RAISES DESCRIPTION
ToolException

If an error occurs during tool execution.

__init__

__init__(**kwargs: Any) -> None

Initialize the tool.

RAISES DESCRIPTION
TypeError

If args_schema is not a subclass of pydantic BaseModel or dict.

TavilyExtract

Bases: BaseTool

Tool that queries the Tavily Extract API with dynamically settable parameters.

METHOD DESCRIPTION
get_name

Get the name of the Runnable.

get_input_schema

The tool's input schema.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a Pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a Pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe Runnable objects.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

invoke

Transform a single input into an output.

ainvoke

Transform a single input into an output.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

stream

Default implementation of stream, which calls invoke.

astream

Default implementation of astream, which calls ainvoke.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

is_lc_serializable

Is this class serializable?

get_lc_namespace

Get the namespace of the LangChain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnable objects that can be set at runtime.

__init_subclass__

Validate the tool class definition during subclass creation.

run

Run the tool.

arun

Run the tool asynchronously.

__init__

Initialize the tool.

InputType property

InputType: type[Input]

Input type.

The type of input this Runnable accepts specified as a type annotation.

RAISES DESCRIPTION
TypeError

If the input type cannot be inferred.

OutputType property

OutputType: type[Output]

Output Type.

The type of output this Runnable produces specified as a type annotation.

RAISES DESCRIPTION
TypeError

If the output type cannot be inferred.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a Pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a Pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_secrets property

lc_secrets: dict[str, str]

A map of constructor argument names to secret ids.

For example, {"openai_api_key": "OPENAI_API_KEY"}

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

Default is an empty dictionary.

return_direct class-attribute instance-attribute

return_direct: bool = False

Whether to return the tool's output directly.

Setting this to True means that after the tool is called, the AgentExecutor will stop looping.

verbose class-attribute instance-attribute

verbose: bool = False

Whether to log the tool's progress.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to be called during tool execution.

tags class-attribute instance-attribute

tags: list[str] | None = None

Optional list of tags associated with the tool. These tags will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = None

Optional metadata associated with the tool. This metadata will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

handle_validation_error class-attribute instance-attribute

handle_validation_error: (
    bool | str | Callable[[ValidationError | ValidationError], str] | None
) = False

Handle the content of the ValidationError thrown.

response_format class-attribute instance-attribute

response_format: Literal['content', 'content_and_artifact'] = 'content'

The tool response format.

If "content" then the output of the tool is interpreted as the contents of a ToolMessage. If "content_and_artifact" then the output is expected to be a two-tuple corresponding to the (content, artifact) of a ToolMessage.

is_single_input property

is_single_input: bool

Check if the tool accepts only a single input argument.

RETURNS DESCRIPTION
bool

True if the tool has only one input argument, False otherwise.

args property

args: dict

Get the tool's input arguments schema.

RETURNS DESCRIPTION
dict

Dictionary containing the tool's argument properties.

tool_call_schema property

tool_call_schema: ArgsSchema

Get the schema for tool calls, excluding injected arguments.

RETURNS DESCRIPTION
ArgsSchema

The schema that should be used for tool calls from language models.

name class-attribute instance-attribute

name: str = 'tavily_extract'

The unique name of the tool that clearly communicates its purpose.

description class-attribute instance-attribute

description: str = "Extracts comprehensive content from web pages based on provided URLs. This tool retrieves raw text of a web page, with an option to include images. It supports two extraction depths: 'basic' for standard text extraction and 'advanced' for a more comprehensive extraction with higher success rate. Ideal for use cases such as content curation, data ingestion for NLP models, and automated information retrieval, this endpoint seamlessly integrates into your content processing pipeline. Input should be a list of one or more URLs."

Used to tell the model how/when/why to use the tool.

You can provide few-shot examples as a part of the description.

args_schema class-attribute instance-attribute

args_schema: Type[BaseModel] = TavilyExtractInput

Pydantic model class to validate and parse the tool's input arguments.

Args schema should be either:

  • A subclass of pydantic.BaseModel.
  • A subclass of pydantic.v1.BaseModel if accessing v1 namespace in pydantic 2
  • a JSON schema dict

handle_tool_error class-attribute instance-attribute

handle_tool_error: bool = True

Handle the content of the ToolException thrown.

extract_depth class-attribute instance-attribute

extract_depth: Optional[Literal['basic', 'advanced']] = None

The depth of the extraction process. 'advanced' extraction retrieves more data than 'basic', with higher success but may increase latency.

Default is 'basic'

include_images class-attribute instance-attribute

include_images: Optional[bool] = None

Include a list of images extracted from the URLs in the response.

Default is False

format class-attribute instance-attribute

format: Optional[str] = None

The format of the extracted web page content. markdown returns content in markdown format. text returns plain text and may increase latency.

Default is 'markdown'

include_favicon class-attribute instance-attribute

include_favicon: Optional[bool] = None

Whether to include the favicon URL for each result.

Default is False.

get_name

get_name(suffix: str | None = None, *, name: str | None = None) -> str

Get the name of the Runnable.

PARAMETER DESCRIPTION
suffix

An optional suffix to append to the name.

TYPE: str | None DEFAULT: None

name

An optional name to use instead of the Runnable's name.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
str

The name of the Runnable.

get_input_schema

get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]

The tool's input schema.

PARAMETER DESCRIPTION
config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

The input schema for the tool.

get_input_jsonschema

get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]

Get a Pydantic model that can be used to validate output to the Runnable.

Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(*, include: Sequence[str] | None = None) -> type[BaseModel]

The type of config this Runnable accepts specified as a Pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(*, include: Sequence[str] | None = None) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: Runnable[Any, Other]
    | Callable[[Iterator[Any]], Iterator[Other]]
    | Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
    | Callable[[Any], Other]
    | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: Runnable[Other, Any]
    | Callable[[Iterator[Other]], Iterator[Any]]
    | Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
    | Callable[[Other], Any]
    | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe Runnable objects.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
PARAMETER DESCRIPTION
*others

Other Runnable or Runnable-like objects to compose

TYPE: Runnable[Any, Other] | Callable[[Any], Other] DEFAULT: ()

name

An optional name for the resulting RunnableSequence.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(keys: str | list[str]) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick a single key:

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]

Pick a list of keys:

from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
PARAMETER DESCRIPTION
keys

A key or list of keys to pick from the output dict.

TYPE: str | list[str]

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

a new Runnable.

assign

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | model | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | model)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
PARAMETER DESCRIPTION
**kwargs

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

TYPE: Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

A new Runnable.

invoke

invoke(
    input: str | dict | ToolCall, config: RunnableConfig | None = None, **kwargs: Any
) -> Any

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

ainvoke async

ainvoke(
    input: str | dict | ToolCall, config: RunnableConfig | None = None, **kwargs: Any
) -> Any

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

batch

batch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

stream

stream(
    input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Default implementation of stream, which calls invoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

astream async

astream(
    input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> AsyncIterator[Output]

Default implementation of astream, which calls ainvoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

diff

Whether to yield diffs between each step or the current state.

TYPE: bool DEFAULT: True

with_streamed_output_list

Whether to yield the streamed_output list.

TYPE: bool DEFAULT: True

include_names

Only include logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvent that provide real-time information about the progress of the Runnable, including StreamEvent from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: The name of the Runnable that generated the event.
  • run_id: Randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: The tags of the Runnable that generated the event.
  • metadata: The metadata of the Runnable that generated the event.
  • data: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

event name chunk input output
on_chat_model_start '[model name]' {"messages": [[SystemMessage, HumanMessage]]}
on_chat_model_stream '[model name]' AIMessageChunk(content="hello")
on_chat_model_end '[model name]' {"messages": [[SystemMessage, HumanMessage]]} AIMessageChunk(content="hello world")
on_llm_start '[model name]' {'input': 'hello'}
on_llm_stream '[model name]' 'Hello'
on_llm_end '[model name]' 'Hello human!'
on_chain_start 'format_docs'
on_chain_stream 'format_docs' 'hello world!, goodbye world!'
on_chain_end 'format_docs' [Document(...)] 'hello world!, goodbye world!'
on_tool_start 'some_tool' {"x": 1, "y": "2"}
on_tool_end 'some_tool' {"x": 1, "y": "2"}
on_retriever_start '[retriever name]' {"query": "hello"}
on_retriever_end '[retriever name]' {"query": "hello"} [Document(...), ..]
on_prompt_start '[template_name]' {"question": "hello"}
on_prompt_end '[template_name]' {"question": "hello"} ChatPromptValue(messages: [SystemMessage, ...])

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

Attribute Type Description
name str A user defined name for the event.
data Any The data associated with the event. This can be anything, though we suggest making it JSON serializable.

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

For instance:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

version

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

TYPE: Literal['v1', 'v2'] DEFAULT: 'v2'

include_names

Only include events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[StreamEvent]

An async stream of StreamEvent.

RAISES DESCRIPTION
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An iterator of inputs to the Runnable.

TYPE: Iterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None,
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An async iterator of inputs to the Runnable.

TYPE: AsyncIterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

PARAMETER DESCRIPTION
**kwargs

The arguments to bind to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

model = ChatOllama(model="llama3.1")

# Without bind
chain = model | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
config

The config to bind to the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
    on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
    on_error: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called before the Runnable starts running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_end

Called after the Runnable finishes running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_error

Called if the Runnable throws an error, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called asynchronously before the Runnable starts running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_end

Called asynchronously after the Runnable finishes running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_error

Called asynchronously if the Runnable throws an error, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
input_type

The input type to bind to the Runnable.

TYPE: type[Input] | None DEFAULT: None

output_type

The output type to bind to the Runnable.

TYPE: type[Output] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: ExponentialJitterParams | None = None,
    stop_after_attempt: int = 3,
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

PARAMETER DESCRIPTION
retry_if_exception_type

A tuple of exception types to retry on.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

wait_exponential_jitter

Whether to add jitter to the wait time between retries.

TYPE: bool DEFAULT: True

stop_after_attempt

The maximum number of attempts to make before giving up.

TYPE: int DEFAULT: 3

exponential_jitter_params

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

TYPE: ExponentialJitterParams | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

RETURNS DESCRIPTION
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
    exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar
PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None,
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

PARAMETER DESCRIPTION
args_schema

The schema for the tool.

TYPE: type[BaseModel] | None DEFAULT: None

name

The name of the tool.

TYPE: str | None DEFAULT: None

description

The description of the tool.

TYPE: str | None DEFAULT: None

arg_types

A dictionary of argument names to types.

TYPE: dict[str, type] | None DEFAULT: None

RETURNS DESCRIPTION
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

RETURNS DESCRIPTION
bool

Whether the class is serializable. Default is False.

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the LangChain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

RETURNS DESCRIPTION
list[str]

The namespace.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> SerializedConstructor | SerializedNotImplemented

Serialize the Runnable to JSON.

RETURNS DESCRIPTION
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

RETURNS DESCRIPTION
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

PARAMETER DESCRIPTION
**kwargs

A dictionary of ConfigurableField instances to configure.

TYPE: AnyConfigurableField DEFAULT: {}

RAISES DESCRIPTION
ValueError

If a configuration key is not found in the Runnable.

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnable objects that can be set at runtime.

PARAMETER DESCRIPTION
which

The ConfigurableField instance that will be used to select the alternative.

TYPE: ConfigurableField

default_key

The default key to use if no alternative is selected.

TYPE: str DEFAULT: 'default'

prefix_keys

Whether to prefix the keys with the ConfigurableField id.

TYPE: bool DEFAULT: False

**kwargs

A dictionary of keys to Runnable instances or callables that return Runnable instances.

TYPE: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

__init_subclass__

__init_subclass__(**kwargs: Any) -> None

Validate the tool class definition during subclass creation.

PARAMETER DESCRIPTION
**kwargs

Additional keyword arguments passed to the parent class.

TYPE: Any DEFAULT: {}

RAISES DESCRIPTION
SchemaAnnotationError

If args_schema has incorrect type annotation.

run

run(
    tool_input: str | dict[str, Any],
    verbose: bool | None = None,
    start_color: str | None = "green",
    color: str | None = "green",
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    config: RunnableConfig | None = None,
    tool_call_id: str | None = None,
    **kwargs: Any,
) -> Any

Run the tool.

PARAMETER DESCRIPTION
tool_input

The input to the tool.

TYPE: str | dict[str, Any]

verbose

Whether to log the tool's progress.

TYPE: bool | None DEFAULT: None

start_color

The color to use when starting the tool.

TYPE: str | None DEFAULT: 'green'

color

The color to use when ending the tool.

TYPE: str | None DEFAULT: 'green'

callbacks

Callbacks to be called during tool execution.

TYPE: Callbacks DEFAULT: None

tags

Optional list of tags associated with the tool.

TYPE: list[str] | None DEFAULT: None

metadata

Optional metadata associated with the tool.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The id of the run.

TYPE: UUID | None DEFAULT: None

config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

tool_call_id

The id of the tool call.

TYPE: str | None DEFAULT: None

**kwargs

Keyword arguments to be passed to tool callbacks (event handler)

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Any

The output of the tool.

RAISES DESCRIPTION
ToolException

If an error occurs during tool execution.

arun async

arun(
    tool_input: str | dict,
    verbose: bool | None = None,
    start_color: str | None = "green",
    color: str | None = "green",
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    config: RunnableConfig | None = None,
    tool_call_id: str | None = None,
    **kwargs: Any,
) -> Any

Run the tool asynchronously.

PARAMETER DESCRIPTION
tool_input

The input to the tool.

TYPE: str | dict

verbose

Whether to log the tool's progress.

TYPE: bool | None DEFAULT: None

start_color

The color to use when starting the tool.

TYPE: str | None DEFAULT: 'green'

color

The color to use when ending the tool.

TYPE: str | None DEFAULT: 'green'

callbacks

Callbacks to be called during tool execution.

TYPE: Callbacks DEFAULT: None

tags

Optional list of tags associated with the tool.

TYPE: list[str] | None DEFAULT: None

metadata

Optional metadata associated with the tool.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The id of the run.

TYPE: UUID | None DEFAULT: None

config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

tool_call_id

The id of the tool call.

TYPE: str | None DEFAULT: None

**kwargs

Keyword arguments to be passed to tool callbacks

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Any

The output of the tool.

RAISES DESCRIPTION
ToolException

If an error occurs during tool execution.

__init__

__init__(**kwargs: Any) -> None

Initialize the tool.

RAISES DESCRIPTION
TypeError

If args_schema is not a subclass of pydantic BaseModel or dict.

TavilyMap

Bases: BaseTool

Tool that sends requests to the Tavily Map API with dynamically settable parameters.

METHOD DESCRIPTION
get_name

Get the name of the Runnable.

get_input_schema

The tool's input schema.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a Pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a Pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe Runnable objects.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

invoke

Transform a single input into an output.

ainvoke

Transform a single input into an output.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

stream

Default implementation of stream, which calls invoke.

astream

Default implementation of astream, which calls ainvoke.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

is_lc_serializable

Is this class serializable?

get_lc_namespace

Get the namespace of the LangChain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnable objects that can be set at runtime.

__init_subclass__

Validate the tool class definition during subclass creation.

run

Run the tool.

arun

Run the tool asynchronously.

__init__

Initialize the tool.

InputType property

InputType: type[Input]

Input type.

The type of input this Runnable accepts specified as a type annotation.

RAISES DESCRIPTION
TypeError

If the input type cannot be inferred.

OutputType property

OutputType: type[Output]

Output Type.

The type of output this Runnable produces specified as a type annotation.

RAISES DESCRIPTION
TypeError

If the output type cannot be inferred.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a Pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a Pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_secrets property

lc_secrets: dict[str, str]

A map of constructor argument names to secret ids.

For example, {"openai_api_key": "OPENAI_API_KEY"}

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

Default is an empty dictionary.

return_direct class-attribute instance-attribute

return_direct: bool = False

Whether to return the tool's output directly.

Setting this to True means that after the tool is called, the AgentExecutor will stop looping.

verbose class-attribute instance-attribute

verbose: bool = False

Whether to log the tool's progress.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to be called during tool execution.

tags class-attribute instance-attribute

tags: list[str] | None = None

Optional list of tags associated with the tool. These tags will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = None

Optional metadata associated with the tool. This metadata will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

handle_validation_error class-attribute instance-attribute

handle_validation_error: (
    bool | str | Callable[[ValidationError | ValidationError], str] | None
) = False

Handle the content of the ValidationError thrown.

response_format class-attribute instance-attribute

response_format: Literal['content', 'content_and_artifact'] = 'content'

The tool response format.

If "content" then the output of the tool is interpreted as the contents of a ToolMessage. If "content_and_artifact" then the output is expected to be a two-tuple corresponding to the (content, artifact) of a ToolMessage.

is_single_input property

is_single_input: bool

Check if the tool accepts only a single input argument.

RETURNS DESCRIPTION
bool

True if the tool has only one input argument, False otherwise.

args property

args: dict

Get the tool's input arguments schema.

RETURNS DESCRIPTION
dict

Dictionary containing the tool's argument properties.

tool_call_schema property

tool_call_schema: ArgsSchema

Get the schema for tool calls, excluding injected arguments.

RETURNS DESCRIPTION
ArgsSchema

The schema that should be used for tool calls from language models.

name class-attribute instance-attribute

name: str = 'tavily_map'

The unique name of the tool that clearly communicates its purpose.

description class-attribute instance-attribute

description: str = '"A powerful web mapping tool that creates a structured map of website URLs, allowing \n        you to discover and analyze site structure, content organization, and navigation paths. \n        Perfect for site audits, content discovery, and understanding website architecture.\n        '

Used to tell the model how/when/why to use the tool.

You can provide few-shot examples as a part of the description.

args_schema class-attribute instance-attribute

args_schema: Type[BaseModel] = TavilyMapInput

Pydantic model class to validate and parse the tool's input arguments.

Args schema should be either:

  • A subclass of pydantic.BaseModel.
  • A subclass of pydantic.v1.BaseModel if accessing v1 namespace in pydantic 2
  • a JSON schema dict

handle_tool_error class-attribute instance-attribute

handle_tool_error: bool = True

Handle the content of the ToolException thrown.

max_depth class-attribute instance-attribute

max_depth: Optional[int] = None

Max depth of the crawl. Defines how far from the base URL the crawler can explore.

max_depth must be greater than 0

default is 1

max_breadth class-attribute instance-attribute

max_breadth: Optional[int] = None

The maximum number of links to follow per level of the tree (i.e., per page).

max_breadth must be greater than 0

default is 20

limit class-attribute instance-attribute

limit: Optional[int] = None

Total number of links the crawler will process before stopping.

limit must be greater than 0

default is 50

instructions class-attribute instance-attribute

instructions: Optional[str] = None

Natural language instructions for the crawler.

ex. "Python SDK"

select_paths class-attribute instance-attribute

select_paths: Optional[List[str]] = None

Regex patterns to select only URLs with specific path patterns.

ex. ["/api/v1.*"]

select_domains class-attribute instance-attribute

select_domains: Optional[List[str]] = None

Regex patterns to select only URLs from specific domains or subdomains.

ex. ["^docs.example.com$"]

exclude_paths class-attribute instance-attribute

exclude_paths: Optional[List[str]] = None

Regex patterns to exclude URLs with specific path patterns ex. [/private/., /admin/.]

exclude_domains class-attribute instance-attribute

exclude_domains: Optional[List[str]] = None

Regex patterns to exclude specific domains or subdomains from mapping ex. [^private.example.com$]

allow_external class-attribute instance-attribute

allow_external: Optional[bool] = None

Whether to allow following links that go to external domains.

default is False

categories class-attribute instance-attribute

categories: Optional[
    List[
        Literal[
            "Careers",
            "Blogs",
            "Documentation",
            "About",
            "Pricing",
            "Community",
            "Developers",
            "Contact",
            "Media",
        ]
    ]
] = None

Filter URLs using predefined categories like 'Documentation', 'Blogs', etc.

get_name

get_name(suffix: str | None = None, *, name: str | None = None) -> str

Get the name of the Runnable.

PARAMETER DESCRIPTION
suffix

An optional suffix to append to the name.

TYPE: str | None DEFAULT: None

name

An optional name to use instead of the Runnable's name.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
str

The name of the Runnable.

get_input_schema

get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]

The tool's input schema.

PARAMETER DESCRIPTION
config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

The input schema for the tool.

get_input_jsonschema

get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]

Get a Pydantic model that can be used to validate output to the Runnable.

Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(*, include: Sequence[str] | None = None) -> type[BaseModel]

The type of config this Runnable accepts specified as a Pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(*, include: Sequence[str] | None = None) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: Runnable[Any, Other]
    | Callable[[Iterator[Any]], Iterator[Other]]
    | Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
    | Callable[[Any], Other]
    | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: Runnable[Other, Any]
    | Callable[[Iterator[Other]], Iterator[Any]]
    | Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
    | Callable[[Other], Any]
    | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe Runnable objects.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
PARAMETER DESCRIPTION
*others

Other Runnable or Runnable-like objects to compose

TYPE: Runnable[Any, Other] | Callable[[Any], Other] DEFAULT: ()

name

An optional name for the resulting RunnableSequence.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(keys: str | list[str]) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick a single key:

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]

Pick a list of keys:

from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
PARAMETER DESCRIPTION
keys

A key or list of keys to pick from the output dict.

TYPE: str | list[str]

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

a new Runnable.

assign

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | model | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | model)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
PARAMETER DESCRIPTION
**kwargs

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

TYPE: Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

A new Runnable.

invoke

invoke(
    input: str | dict | ToolCall, config: RunnableConfig | None = None, **kwargs: Any
) -> Any

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

ainvoke async

ainvoke(
    input: str | dict | ToolCall, config: RunnableConfig | None = None, **kwargs: Any
) -> Any

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

batch

batch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

stream

stream(
    input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Default implementation of stream, which calls invoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

astream async

astream(
    input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> AsyncIterator[Output]

Default implementation of astream, which calls ainvoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

diff

Whether to yield diffs between each step or the current state.

TYPE: bool DEFAULT: True

with_streamed_output_list

Whether to yield the streamed_output list.

TYPE: bool DEFAULT: True

include_names

Only include logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvent that provide real-time information about the progress of the Runnable, including StreamEvent from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: The name of the Runnable that generated the event.
  • run_id: Randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: The tags of the Runnable that generated the event.
  • metadata: The metadata of the Runnable that generated the event.
  • data: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

event name chunk input output
on_chat_model_start '[model name]' {"messages": [[SystemMessage, HumanMessage]]}
on_chat_model_stream '[model name]' AIMessageChunk(content="hello")
on_chat_model_end '[model name]' {"messages": [[SystemMessage, HumanMessage]]} AIMessageChunk(content="hello world")
on_llm_start '[model name]' {'input': 'hello'}
on_llm_stream '[model name]' 'Hello'
on_llm_end '[model name]' 'Hello human!'
on_chain_start 'format_docs'
on_chain_stream 'format_docs' 'hello world!, goodbye world!'
on_chain_end 'format_docs' [Document(...)] 'hello world!, goodbye world!'
on_tool_start 'some_tool' {"x": 1, "y": "2"}
on_tool_end 'some_tool' {"x": 1, "y": "2"}
on_retriever_start '[retriever name]' {"query": "hello"}
on_retriever_end '[retriever name]' {"query": "hello"} [Document(...), ..]
on_prompt_start '[template_name]' {"question": "hello"}
on_prompt_end '[template_name]' {"question": "hello"} ChatPromptValue(messages: [SystemMessage, ...])

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

Attribute Type Description
name str A user defined name for the event.
data Any The data associated with the event. This can be anything, though we suggest making it JSON serializable.

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

For instance:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

version

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

TYPE: Literal['v1', 'v2'] DEFAULT: 'v2'

include_names

Only include events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[StreamEvent]

An async stream of StreamEvent.

RAISES DESCRIPTION
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An iterator of inputs to the Runnable.

TYPE: Iterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None,
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An async iterator of inputs to the Runnable.

TYPE: AsyncIterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

PARAMETER DESCRIPTION
**kwargs

The arguments to bind to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

model = ChatOllama(model="llama3.1")

# Without bind
chain = model | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
config

The config to bind to the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
    on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
    on_error: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called before the Runnable starts running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_end

Called after the Runnable finishes running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_error

Called if the Runnable throws an error, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called asynchronously before the Runnable starts running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_end

Called asynchronously after the Runnable finishes running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_error

Called asynchronously if the Runnable throws an error, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
input_type

The input type to bind to the Runnable.

TYPE: type[Input] | None DEFAULT: None

output_type

The output type to bind to the Runnable.

TYPE: type[Output] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: ExponentialJitterParams | None = None,
    stop_after_attempt: int = 3,
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

PARAMETER DESCRIPTION
retry_if_exception_type

A tuple of exception types to retry on.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

wait_exponential_jitter

Whether to add jitter to the wait time between retries.

TYPE: bool DEFAULT: True

stop_after_attempt

The maximum number of attempts to make before giving up.

TYPE: int DEFAULT: 3

exponential_jitter_params

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

TYPE: ExponentialJitterParams | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

RETURNS DESCRIPTION
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
    exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar
PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None,
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

PARAMETER DESCRIPTION
args_schema

The schema for the tool.

TYPE: type[BaseModel] | None DEFAULT: None

name

The name of the tool.

TYPE: str | None DEFAULT: None

description

The description of the tool.

TYPE: str | None DEFAULT: None

arg_types

A dictionary of argument names to types.

TYPE: dict[str, type] | None DEFAULT: None

RETURNS DESCRIPTION
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

RETURNS DESCRIPTION
bool

Whether the class is serializable. Default is False.

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the LangChain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

RETURNS DESCRIPTION
list[str]

The namespace.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> SerializedConstructor | SerializedNotImplemented

Serialize the Runnable to JSON.

RETURNS DESCRIPTION
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

RETURNS DESCRIPTION
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

PARAMETER DESCRIPTION
**kwargs

A dictionary of ConfigurableField instances to configure.

TYPE: AnyConfigurableField DEFAULT: {}

RAISES DESCRIPTION
ValueError

If a configuration key is not found in the Runnable.

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnable objects that can be set at runtime.

PARAMETER DESCRIPTION
which

The ConfigurableField instance that will be used to select the alternative.

TYPE: ConfigurableField

default_key

The default key to use if no alternative is selected.

TYPE: str DEFAULT: 'default'

prefix_keys

Whether to prefix the keys with the ConfigurableField id.

TYPE: bool DEFAULT: False

**kwargs

A dictionary of keys to Runnable instances or callables that return Runnable instances.

TYPE: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

__init_subclass__

__init_subclass__(**kwargs: Any) -> None

Validate the tool class definition during subclass creation.

PARAMETER DESCRIPTION
**kwargs

Additional keyword arguments passed to the parent class.

TYPE: Any DEFAULT: {}

RAISES DESCRIPTION
SchemaAnnotationError

If args_schema has incorrect type annotation.

run

run(
    tool_input: str | dict[str, Any],
    verbose: bool | None = None,
    start_color: str | None = "green",
    color: str | None = "green",
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    config: RunnableConfig | None = None,
    tool_call_id: str | None = None,
    **kwargs: Any,
) -> Any

Run the tool.

PARAMETER DESCRIPTION
tool_input

The input to the tool.

TYPE: str | dict[str, Any]

verbose

Whether to log the tool's progress.

TYPE: bool | None DEFAULT: None

start_color

The color to use when starting the tool.

TYPE: str | None DEFAULT: 'green'

color

The color to use when ending the tool.

TYPE: str | None DEFAULT: 'green'

callbacks

Callbacks to be called during tool execution.

TYPE: Callbacks DEFAULT: None

tags

Optional list of tags associated with the tool.

TYPE: list[str] | None DEFAULT: None

metadata

Optional metadata associated with the tool.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The id of the run.

TYPE: UUID | None DEFAULT: None

config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

tool_call_id

The id of the tool call.

TYPE: str | None DEFAULT: None

**kwargs

Keyword arguments to be passed to tool callbacks (event handler)

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Any

The output of the tool.

RAISES DESCRIPTION
ToolException

If an error occurs during tool execution.

arun async

arun(
    tool_input: str | dict,
    verbose: bool | None = None,
    start_color: str | None = "green",
    color: str | None = "green",
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    config: RunnableConfig | None = None,
    tool_call_id: str | None = None,
    **kwargs: Any,
) -> Any

Run the tool asynchronously.

PARAMETER DESCRIPTION
tool_input

The input to the tool.

TYPE: str | dict

verbose

Whether to log the tool's progress.

TYPE: bool | None DEFAULT: None

start_color

The color to use when starting the tool.

TYPE: str | None DEFAULT: 'green'

color

The color to use when ending the tool.

TYPE: str | None DEFAULT: 'green'

callbacks

Callbacks to be called during tool execution.

TYPE: Callbacks DEFAULT: None

tags

Optional list of tags associated with the tool.

TYPE: list[str] | None DEFAULT: None

metadata

Optional metadata associated with the tool.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The id of the run.

TYPE: UUID | None DEFAULT: None

config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

tool_call_id

The id of the tool call.

TYPE: str | None DEFAULT: None

**kwargs

Keyword arguments to be passed to tool callbacks

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Any

The output of the tool.

RAISES DESCRIPTION
ToolException

If an error occurs during tool execution.

__init__

__init__(**kwargs: Any) -> None

Initialize the tool.

RAISES DESCRIPTION
TypeError

If args_schema is not a subclass of pydantic BaseModel or dict.

TavilySearch

Bases: BaseTool

Tool that queries the Tavily Search API and gets back json.

Setup

Install langchain-tavily and set environment variable TAVILY_API_KEY.

.. code-block:: bash

pip install -U langchain-tavily
export TAVILY_API_KEY="your-api-key"

Instantiate:

.. code-block:: python
    from langchain_tavily import TavilySearch

    tool = TavilySearch(
        max_results=1,
        topic="general",
        # include_answer=False,
        # include_raw_content=False,
        # include_images=False,
        # include_image_descriptions=False,
        # search_depth="basic",
        # time_range="day",
        # include_domains=None,
        # exclude_domains=None,
        # country=None
        # include_favicon=False
    )

Invoke directly with args:

.. code-block:: python

    tool.invoke({"query": "What happened at the last wimbledon"})

.. code-block:: json

    {
        'query': 'What happened at the last wimbledon',
        'follow_up_questions': None,
        'answer': None,
        'images': [],
        'results': [{'title': "Andy Murray pulls out of the men's singles draw at his last Wimbledon",
                    'url': 'https://www.nbcnews.com/news/sports/andy-murray-wimbledon-tennis-singles-draw-rcna159912',
                    'content': "NBC News Now LONDON — Andy Murray, one of the last decade's most successful ..."
                    'score': 0.6755297,
                    'raw_content': None
                    }],
        'response_time': 1.31
    }
METHOD DESCRIPTION
get_name

Get the name of the Runnable.

get_input_schema

The tool's input schema.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a Pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a Pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe Runnable objects.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

invoke

Transform a single input into an output.

ainvoke

Transform a single input into an output.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

stream

Default implementation of stream, which calls invoke.

astream

Default implementation of astream, which calls ainvoke.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

is_lc_serializable

Is this class serializable?

get_lc_namespace

Get the namespace of the LangChain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnable objects that can be set at runtime.

__init_subclass__

Validate the tool class definition during subclass creation.

run

Run the tool.

arun

Run the tool asynchronously.

__init__

Initialize the tool.

InputType property

InputType: type[Input]

Input type.

The type of input this Runnable accepts specified as a type annotation.

RAISES DESCRIPTION
TypeError

If the input type cannot be inferred.

OutputType property

OutputType: type[Output]

Output Type.

The type of output this Runnable produces specified as a type annotation.

RAISES DESCRIPTION
TypeError

If the output type cannot be inferred.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a Pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a Pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_secrets property

lc_secrets: dict[str, str]

A map of constructor argument names to secret ids.

For example, {"openai_api_key": "OPENAI_API_KEY"}

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

Default is an empty dictionary.

return_direct class-attribute instance-attribute

return_direct: bool = False

Whether to return the tool's output directly.

Setting this to True means that after the tool is called, the AgentExecutor will stop looping.

verbose class-attribute instance-attribute

verbose: bool = False

Whether to log the tool's progress.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to be called during tool execution.

tags class-attribute instance-attribute

tags: list[str] | None = None

Optional list of tags associated with the tool. These tags will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = None

Optional metadata associated with the tool. This metadata will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

handle_validation_error class-attribute instance-attribute

handle_validation_error: (
    bool | str | Callable[[ValidationError | ValidationError], str] | None
) = False

Handle the content of the ValidationError thrown.

response_format class-attribute instance-attribute

response_format: Literal['content', 'content_and_artifact'] = 'content'

The tool response format.

If "content" then the output of the tool is interpreted as the contents of a ToolMessage. If "content_and_artifact" then the output is expected to be a two-tuple corresponding to the (content, artifact) of a ToolMessage.

is_single_input property

is_single_input: bool

Check if the tool accepts only a single input argument.

RETURNS DESCRIPTION
bool

True if the tool has only one input argument, False otherwise.

args property

args: dict

Get the tool's input arguments schema.

RETURNS DESCRIPTION
dict

Dictionary containing the tool's argument properties.

tool_call_schema property

tool_call_schema: ArgsSchema

Get the schema for tool calls, excluding injected arguments.

RETURNS DESCRIPTION
ArgsSchema

The schema that should be used for tool calls from language models.

name class-attribute instance-attribute

name: str = 'tavily_search'

The unique name of the tool that clearly communicates its purpose.

description class-attribute instance-attribute

description: str = "A search engine optimized for comprehensive, accurate, and trusted results. Useful for when you need to answer questions about current events. It not only retrieves URLs and snippets, but offers advanced search depths, domain management, time range filters, and image search, this tool delivers real-time, accurate, and citation-backed results.Input should be a search query."

Used to tell the model how/when/why to use the tool.

You can provide few-shot examples as a part of the description.

args_schema class-attribute instance-attribute

args_schema: Type[BaseModel] = TavilySearchInput

Pydantic model class to validate and parse the tool's input arguments.

Args schema should be either:

  • A subclass of pydantic.BaseModel.
  • A subclass of pydantic.v1.BaseModel if accessing v1 namespace in pydantic 2
  • a JSON schema dict

handle_tool_error class-attribute instance-attribute

handle_tool_error: bool = True

Handle the content of the ToolException thrown.

auto_parameters class-attribute instance-attribute

auto_parameters: Optional[bool] = None

When auto_parameters is enabled, Tavily automatically configures search parameters based on your query's content and intent. You can still set other parameters manually, and your explicit values will override the automatic ones. The parameters include_answer, include_raw_content, and max_results must always be set manually, as they directly affect response size. Note: search_depth may be automatically set to advanced when it's likely to improve results. This uses 2 API credits per request. To avoid the extra cost, you can explicitly set search_depth to basic.

Default is False.

include_domains class-attribute instance-attribute

include_domains: Optional[List[str]] = None

A list of domains to specifically include in the search results

default is None

exclude_domains class-attribute instance-attribute

exclude_domains: Optional[List[str]] = None

A list of domains to specifically exclude from the search results

default is None

search_depth class-attribute instance-attribute

search_depth: Optional[Literal['basic', 'advanced']] = None

The depth of the search. It can be 'basic' or 'advanced'

default is "basic"

include_images class-attribute instance-attribute

include_images: Optional[bool] = None

Include a list of query related images in the response

default is False

time_range class-attribute instance-attribute

time_range: Optional[Literal['day', 'week', 'month', 'year']] = None

The time range back from the current date to filter results

default is None

max_results class-attribute instance-attribute

max_results: Optional[int] = None

Max search results to return,

default is 5

topic class-attribute instance-attribute

topic: Optional[Literal['general', 'news', 'finance']] = None

The category of the search. Can be "general", "news", or "finance".

Default is "general".

include_answer class-attribute instance-attribute

include_answer: Optional[Union[bool, Literal['basic', 'advanced']]] = None

Include a short answer to original query in the search results.

Default is False.

include_raw_content class-attribute instance-attribute

include_raw_content: Optional[Union[bool, Literal['markdown', 'text']]] = None

Include the cleaned and parsed HTML content of each search result. "markdown" returns search result content in markdown format. "text" returns the plain text from the results and may increase latency.

Default is "markdown".

include_image_descriptions class-attribute instance-attribute

include_image_descriptions: Optional[bool] = None

Include a descriptive text for each image in the search results.

Default is False.

country class-attribute instance-attribute

country: Optional[str] = None

Boost search results from a specific country. This will prioritize content from the selected country in the search results. Available only if topic is general.

To see the countries supported visit our docs https://docs.tavily.com/documentation/api-reference/endpoint/search Default is None.

include_favicon class-attribute instance-attribute

include_favicon: Optional[bool] = None

Whether to include the favicon URL for each result.

Default is False.

get_name

get_name(suffix: str | None = None, *, name: str | None = None) -> str

Get the name of the Runnable.

PARAMETER DESCRIPTION
suffix

An optional suffix to append to the name.

TYPE: str | None DEFAULT: None

name

An optional name to use instead of the Runnable's name.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
str

The name of the Runnable.

get_input_schema

get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]

The tool's input schema.

PARAMETER DESCRIPTION
config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

The input schema for the tool.

get_input_jsonschema

get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]

Get a Pydantic model that can be used to validate output to the Runnable.

Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(*, include: Sequence[str] | None = None) -> type[BaseModel]

The type of config this Runnable accepts specified as a Pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(*, include: Sequence[str] | None = None) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: Runnable[Any, Other]
    | Callable[[Iterator[Any]], Iterator[Other]]
    | Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
    | Callable[[Any], Other]
    | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: Runnable[Other, Any]
    | Callable[[Iterator[Other]], Iterator[Any]]
    | Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
    | Callable[[Other], Any]
    | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe Runnable objects.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
PARAMETER DESCRIPTION
*others

Other Runnable or Runnable-like objects to compose

TYPE: Runnable[Any, Other] | Callable[[Any], Other] DEFAULT: ()

name

An optional name for the resulting RunnableSequence.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(keys: str | list[str]) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick a single key:

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]

Pick a list of keys:

from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
PARAMETER DESCRIPTION
keys

A key or list of keys to pick from the output dict.

TYPE: str | list[str]

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

a new Runnable.

assign

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | model | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | model)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
PARAMETER DESCRIPTION
**kwargs

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

TYPE: Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

A new Runnable.

invoke

invoke(
    input: str | dict | ToolCall, config: RunnableConfig | None = None, **kwargs: Any
) -> Any

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

ainvoke async

ainvoke(
    input: str | dict | ToolCall, config: RunnableConfig | None = None, **kwargs: Any
) -> Any

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

batch

batch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

stream

stream(
    input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Default implementation of stream, which calls invoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

astream async

astream(
    input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> AsyncIterator[Output]

Default implementation of astream, which calls ainvoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

diff

Whether to yield diffs between each step or the current state.

TYPE: bool DEFAULT: True

with_streamed_output_list

Whether to yield the streamed_output list.

TYPE: bool DEFAULT: True

include_names

Only include logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvent that provide real-time information about the progress of the Runnable, including StreamEvent from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: The name of the Runnable that generated the event.
  • run_id: Randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: The tags of the Runnable that generated the event.
  • metadata: The metadata of the Runnable that generated the event.
  • data: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

event name chunk input output
on_chat_model_start '[model name]' {"messages": [[SystemMessage, HumanMessage]]}
on_chat_model_stream '[model name]' AIMessageChunk(content="hello")
on_chat_model_end '[model name]' {"messages": [[SystemMessage, HumanMessage]]} AIMessageChunk(content="hello world")
on_llm_start '[model name]' {'input': 'hello'}
on_llm_stream '[model name]' 'Hello'
on_llm_end '[model name]' 'Hello human!'
on_chain_start 'format_docs'
on_chain_stream 'format_docs' 'hello world!, goodbye world!'
on_chain_end 'format_docs' [Document(...)] 'hello world!, goodbye world!'
on_tool_start 'some_tool' {"x": 1, "y": "2"}
on_tool_end 'some_tool' {"x": 1, "y": "2"}
on_retriever_start '[retriever name]' {"query": "hello"}
on_retriever_end '[retriever name]' {"query": "hello"} [Document(...), ..]
on_prompt_start '[template_name]' {"question": "hello"}
on_prompt_end '[template_name]' {"question": "hello"} ChatPromptValue(messages: [SystemMessage, ...])

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

Attribute Type Description
name str A user defined name for the event.
data Any The data associated with the event. This can be anything, though we suggest making it JSON serializable.

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

For instance:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

version

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

TYPE: Literal['v1', 'v2'] DEFAULT: 'v2'

include_names

Only include events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[StreamEvent]

An async stream of StreamEvent.

RAISES DESCRIPTION
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An iterator of inputs to the Runnable.

TYPE: Iterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None,
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An async iterator of inputs to the Runnable.

TYPE: AsyncIterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

PARAMETER DESCRIPTION
**kwargs

The arguments to bind to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

model = ChatOllama(model="llama3.1")

# Without bind
chain = model | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
config

The config to bind to the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
    on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
    on_error: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called before the Runnable starts running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_end

Called after the Runnable finishes running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_error

Called if the Runnable throws an error, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called asynchronously before the Runnable starts running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_end

Called asynchronously after the Runnable finishes running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_error

Called asynchronously if the Runnable throws an error, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
input_type

The input type to bind to the Runnable.

TYPE: type[Input] | None DEFAULT: None

output_type

The output type to bind to the Runnable.

TYPE: type[Output] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: ExponentialJitterParams | None = None,
    stop_after_attempt: int = 3,
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

PARAMETER DESCRIPTION
retry_if_exception_type

A tuple of exception types to retry on.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

wait_exponential_jitter

Whether to add jitter to the wait time between retries.

TYPE: bool DEFAULT: True

stop_after_attempt

The maximum number of attempts to make before giving up.

TYPE: int DEFAULT: 3

exponential_jitter_params

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

TYPE: ExponentialJitterParams | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

RETURNS DESCRIPTION
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
    exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar
PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None,
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

PARAMETER DESCRIPTION
args_schema

The schema for the tool.

TYPE: type[BaseModel] | None DEFAULT: None

name

The name of the tool.

TYPE: str | None DEFAULT: None

description

The description of the tool.

TYPE: str | None DEFAULT: None

arg_types

A dictionary of argument names to types.

TYPE: dict[str, type] | None DEFAULT: None

RETURNS DESCRIPTION
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

RETURNS DESCRIPTION
bool

Whether the class is serializable. Default is False.

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the LangChain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

RETURNS DESCRIPTION
list[str]

The namespace.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> SerializedConstructor | SerializedNotImplemented

Serialize the Runnable to JSON.

RETURNS DESCRIPTION
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

RETURNS DESCRIPTION
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

PARAMETER DESCRIPTION
**kwargs

A dictionary of ConfigurableField instances to configure.

TYPE: AnyConfigurableField DEFAULT: {}

RAISES DESCRIPTION
ValueError

If a configuration key is not found in the Runnable.

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnable objects that can be set at runtime.

PARAMETER DESCRIPTION
which

The ConfigurableField instance that will be used to select the alternative.

TYPE: ConfigurableField

default_key

The default key to use if no alternative is selected.

TYPE: str DEFAULT: 'default'

prefix_keys

Whether to prefix the keys with the ConfigurableField id.

TYPE: bool DEFAULT: False

**kwargs

A dictionary of keys to Runnable instances or callables that return Runnable instances.

TYPE: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

__init_subclass__

__init_subclass__(**kwargs: Any) -> None

Validate the tool class definition during subclass creation.

PARAMETER DESCRIPTION
**kwargs

Additional keyword arguments passed to the parent class.

TYPE: Any DEFAULT: {}

RAISES DESCRIPTION
SchemaAnnotationError

If args_schema has incorrect type annotation.

run

run(
    tool_input: str | dict[str, Any],
    verbose: bool | None = None,
    start_color: str | None = "green",
    color: str | None = "green",
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    config: RunnableConfig | None = None,
    tool_call_id: str | None = None,
    **kwargs: Any,
) -> Any

Run the tool.

PARAMETER DESCRIPTION
tool_input

The input to the tool.

TYPE: str | dict[str, Any]

verbose

Whether to log the tool's progress.

TYPE: bool | None DEFAULT: None

start_color

The color to use when starting the tool.

TYPE: str | None DEFAULT: 'green'

color

The color to use when ending the tool.

TYPE: str | None DEFAULT: 'green'

callbacks

Callbacks to be called during tool execution.

TYPE: Callbacks DEFAULT: None

tags

Optional list of tags associated with the tool.

TYPE: list[str] | None DEFAULT: None

metadata

Optional metadata associated with the tool.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The id of the run.

TYPE: UUID | None DEFAULT: None

config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

tool_call_id

The id of the tool call.

TYPE: str | None DEFAULT: None

**kwargs

Keyword arguments to be passed to tool callbacks (event handler)

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Any

The output of the tool.

RAISES DESCRIPTION
ToolException

If an error occurs during tool execution.

arun async

arun(
    tool_input: str | dict,
    verbose: bool | None = None,
    start_color: str | None = "green",
    color: str | None = "green",
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    config: RunnableConfig | None = None,
    tool_call_id: str | None = None,
    **kwargs: Any,
) -> Any

Run the tool asynchronously.

PARAMETER DESCRIPTION
tool_input

The input to the tool.

TYPE: str | dict

verbose

Whether to log the tool's progress.

TYPE: bool | None DEFAULT: None

start_color

The color to use when starting the tool.

TYPE: str | None DEFAULT: 'green'

color

The color to use when ending the tool.

TYPE: str | None DEFAULT: 'green'

callbacks

Callbacks to be called during tool execution.

TYPE: Callbacks DEFAULT: None

tags

Optional list of tags associated with the tool.

TYPE: list[str] | None DEFAULT: None

metadata

Optional metadata associated with the tool.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The id of the run.

TYPE: UUID | None DEFAULT: None

config

The configuration for the tool.

TYPE: RunnableConfig | None DEFAULT: None

tool_call_id

The id of the tool call.

TYPE: str | None DEFAULT: None

**kwargs

Keyword arguments to be passed to tool callbacks

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Any

The output of the tool.

RAISES DESCRIPTION
ToolException

If an error occurs during tool execution.

__init__

__init__(**kwargs: Any) -> None

Initialize the tool.

RAISES DESCRIPTION
TypeError

If args_schema is not a subclass of pydantic BaseModel or dict.