langchain-perplexity
¶
Modules:
Name | Description |
---|---|
chat_models |
Wrapper around Perplexity APIs. |
Classes:
Name | Description |
---|---|
ChatPerplexity |
|
ChatPerplexity
¶
Bases: BaseChatModel
Perplexity AI
Chat models API.
Setup
To use, you should have the environment variable PPLX_API_KEY
set to your API key.
Any parameters that are valid to be passed to the openai.create call
can be passed in, even if not explicitly saved on this class.
.. code-block:: bash
export PPLX_API_KEY=your_api_key
Key init args - completion params: model: str Name of the model to use. e.g. "sonar" temperature: float Sampling temperature to use. Default is 0.7 max_tokens: Optional[int] Maximum number of tokens to generate. streaming: bool Whether to stream the results or not.
Key init args - client params: pplx_api_key: Optional[str] API key for PerplexityChat API. Default is None. request_timeout: Optional[Union[float, Tuple[float, float]]] Timeout for requests to PerplexityChat completion API. Default is None. max_retries: int Maximum number of retries to make when generating.
See full list of supported init args and their descriptions in the params section.
Instantiate: .. code-block:: python
from langchain_perplexity import ChatPerplexity
llm = ChatPerplexity(model="sonar", temperature=0.7)
Invoke: .. code-block:: python
messages = [("system", "You are a chatbot."), ("user", "Hello!")]
llm.invoke(messages)
Invoke with structured output: .. code-block:: python
from pydantic import BaseModel
class StructuredOutput(BaseModel):
role: str
content: str
llm.with_structured_output(StructuredOutput)
llm.invoke(messages)
Invoke with perplexity-specific params: .. code-block:: python
llm.invoke(messages, extra_body={"search_recency_filter": "week"})
Stream: .. code-block:: python
for chunk in llm.stream(messages):
print(chunk.content)
Token usage: .. code-block:: python
response = llm.invoke(messages)
response.usage_metadata
Response metadata: .. code-block:: python
response = llm.invoke(messages)
response.response_metadata
Methods:
Name | Description |
---|---|
get_name |
Get the name of the |
get_input_schema |
Get a pydantic model that can be used to validate input to the Runnable. |
get_input_jsonschema |
Get a JSON schema that represents the input to the |
get_output_schema |
Get a pydantic model that can be used to validate output to the |
get_output_jsonschema |
Get a JSON schema that represents the output of the |
config_schema |
The type of config this |
get_config_jsonschema |
Get a JSON schema that represents the config of the |
get_graph |
Return a graph representation of this |
get_prompts |
Return a list of prompts used by this |
__or__ |
Runnable "or" operator. |
__ror__ |
Runnable "reverse-or" operator. |
pipe |
Pipe runnables. |
pick |
Pick keys from the output dict of this |
assign |
Assigns new fields to the dict output of this |
batch |
Default implementation runs invoke in parallel using a thread pool executor. |
batch_as_completed |
Run |
abatch |
Default implementation runs |
abatch_as_completed |
Run |
astream_log |
Stream all output from a |
astream_events |
Generate a stream of events. |
transform |
Transform inputs to outputs. |
atransform |
Transform inputs to outputs. |
bind |
Bind arguments to a |
with_config |
Bind config to a |
with_listeners |
Bind lifecycle listeners to a |
with_alisteners |
Bind async lifecycle listeners to a |
with_types |
Bind input and output types to a |
with_retry |
Create a new Runnable that retries the original Runnable on exceptions. |
map |
Return a new |
with_fallbacks |
Add fallbacks to a |
as_tool |
Create a |
__init__ |
|
is_lc_serializable |
Is this class serializable? |
get_lc_namespace |
Get the namespace of the langchain object. |
lc_id |
Return a unique identifier for this class for serialization purposes. |
to_json |
Serialize the |
to_json_not_implemented |
Serialize a "not implemented" object. |
configurable_fields |
Configure particular |
configurable_alternatives |
Configure alternatives for |
set_verbose |
If verbose is None, set it. |
get_token_ids |
Return the ordered ids of the tokens in a text. |
get_num_tokens |
Get the number of tokens present in the text. |
get_num_tokens_from_messages |
Get the number of tokens in the messages. |
generate |
Pass a sequence of prompts to the model and return model generations. |
agenerate |
Asynchronously pass a sequence of prompts to a model and return generations. |
dict |
Return a dictionary of the LLM. |
bind_tools |
Bind tools to the model. |
build_extra |
Build extra kwargs from additional params that were passed in. |
validate_environment |
Validate that api key and python package exists in environment. |
with_structured_output |
Model wrapper that returns outputs formatted to match the given schema for Preplexity. |
Attributes:
Name | Type | Description |
---|---|---|
InputType |
TypeAlias
|
Get the input type for this runnable. |
OutputType |
Any
|
Get the output type for this runnable. |
input_schema |
type[BaseModel]
|
The type of input this |
output_schema |
type[BaseModel]
|
Output schema. |
config_specs |
list[ConfigurableFieldSpec]
|
List configurable fields for this |
lc_attributes |
dict
|
List of attribute names that should be included in the serialized kwargs. |
cache |
BaseCache | bool | None
|
Whether to cache the response. |
verbose |
bool
|
Whether to print out response text. |
callbacks |
Callbacks
|
Callbacks to add to the run trace. |
tags |
list[str] | None
|
Tags to add to the run trace. |
metadata |
dict[str, Any] | None
|
Metadata to add to the run trace. |
custom_get_token_ids |
Callable[[str], list[int]] | None
|
Optional encoder to use for counting tokens. |
rate_limiter |
BaseRateLimiter | None
|
An optional rate limiter to use for limiting the number of requests. |
disable_streaming |
bool | Literal['tool_calling']
|
Whether to disable streaming for this model. |
output_version |
str | None
|
Version of |
model |
str
|
Model name. |
temperature |
float
|
What sampling temperature to use. |
model_kwargs |
dict[str, Any]
|
Holds any model parameters valid for |
pplx_api_key |
Optional[SecretStr]
|
Base URL path for API requests, |
request_timeout |
Optional[Union[float, tuple[float, float]]]
|
Timeout for requests to PerplexityChat completion API. Default is None. |
max_retries |
int
|
Maximum number of retries to make when generating. |
streaming |
bool
|
Whether to stream the results or not. |
max_tokens |
Optional[int]
|
Maximum number of tokens to generate. |
input_schema
property
¶
input_schema: type[BaseModel]
The type of input this Runnable
accepts specified as a pydantic model.
output_schema
property
¶
output_schema: type[BaseModel]
Output schema.
The type of output this Runnable
produces specified as a pydantic model.
config_specs
property
¶
config_specs: list[ConfigurableFieldSpec]
List configurable fields for this Runnable
.
lc_attributes
property
¶
lc_attributes: dict
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor. Default is an empty dictionary.
cache
class-attribute
instance-attribute
¶
cache: BaseCache | bool | None = Field(
default=None, exclude=True
)
Whether to cache the response.
- If true, will use the global cache.
- If false, will not use a cache
- If None, will use the global cache if it's set, otherwise no cache.
- If instance of
BaseCache
, will use the provided cache.
Caching is not currently supported for streaming methods of models.
verbose
class-attribute
instance-attribute
¶
verbose: bool = Field(
default_factory=_get_verbosity, exclude=True, repr=False
)
Whether to print out response text.
callbacks
class-attribute
instance-attribute
¶
Callbacks to add to the run trace.
tags
class-attribute
instance-attribute
¶
Tags to add to the run trace.
metadata
class-attribute
instance-attribute
¶
Metadata to add to the run trace.
custom_get_token_ids
class-attribute
instance-attribute
¶
Optional encoder to use for counting tokens.
rate_limiter
class-attribute
instance-attribute
¶
rate_limiter: BaseRateLimiter | None = Field(
default=None, exclude=True
)
An optional rate limiter to use for limiting the number of requests.
disable_streaming
class-attribute
instance-attribute
¶
Whether to disable streaming for this model.
If streaming is bypassed, then stream()
/astream()
/astream_events()
will
defer to invoke()
/ainvoke()
.
- If True, will always bypass streaming case.
- If
'tool_calling'
, will bypass streaming case only when the model is called with atools
keyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke()
) only when the tools argument is provided. This offers the best of both worlds. - If False (default), will always use streaming case if available.
The main reason for this flag is that code might be written using stream()
and
a user may want to swap out a given model for another model whose the implementation
does not properly support streaming.
output_version
class-attribute
instance-attribute
¶
output_version: str | None = Field(
default_factory=from_env(
"LC_OUTPUT_VERSION", default=None
)
)
Version of AIMessage
output format to store in message content.
AIMessage.content_blocks
will lazily parse the contents of content
into a
standard format. This flag can be used to additionally store the standard format
in message content, e.g., for serialization purposes.
Supported values:
"v0"
: provider-specific format in content (can lazily-parse with.content_blocks
)"v1"
: standardized format in content (consistent with.content_blocks
)
Partner packages (e.g., langchain-openai
) can also use this field to roll out
new content formats in a backward-compatible way.
Added in version 1.0
temperature
class-attribute
instance-attribute
¶
temperature: float = 0.7
What sampling temperature to use.
model_kwargs
class-attribute
instance-attribute
¶
Holds any model parameters valid for create
call not explicitly specified.
pplx_api_key
class-attribute
instance-attribute
¶
pplx_api_key: Optional[SecretStr] = Field(
default_factory=secret_from_env(
"PPLX_API_KEY", default=None
),
alias="api_key",
)
Base URL path for API requests, leave blank if not using a proxy or service emulator.
request_timeout
class-attribute
instance-attribute
¶
Timeout for requests to PerplexityChat completion API. Default is None.
max_retries
class-attribute
instance-attribute
¶
max_retries: int = 6
Maximum number of retries to make when generating.
streaming
class-attribute
instance-attribute
¶
streaming: bool = False
Whether to stream the results or not.
max_tokens
class-attribute
instance-attribute
¶
Maximum number of tokens to generate.
get_name
¶
get_input_schema
¶
get_input_schema(
config: RunnableConfig | None = None,
) -> type[BaseModel]
Get a pydantic model that can be used to validate input to the Runnable.
Runnable
s that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic input schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
RunnableConfig | None
|
A config to use when generating the schema. |
None
|
Returns:
Type | Description |
---|---|
type[BaseModel]
|
A pydantic model that can be used to validate input. |
get_input_jsonschema
¶
Get a JSON schema that represents the input to the Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
RunnableConfig | None
|
A config to use when generating the schema. |
None
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A JSON schema that represents the input to the |
Example
Added in version 0.3.0
get_output_schema
¶
get_output_schema(
config: RunnableConfig | None = None,
) -> type[BaseModel]
Get a pydantic model that can be used to validate output to the Runnable
.
Runnable
s that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic output schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
RunnableConfig | None
|
A config to use when generating the schema. |
None
|
Returns:
Type | Description |
---|---|
type[BaseModel]
|
A pydantic model that can be used to validate output. |
get_output_jsonschema
¶
Get a JSON schema that represents the output of the Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
RunnableConfig | None
|
A config to use when generating the schema. |
None
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A JSON schema that represents the output of the |
Example
Added in version 0.3.0
config_schema
¶
The type of config this Runnable
accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives
methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
include
|
Sequence[str] | None
|
A list of fields to include in the config schema. |
None
|
Returns:
Type | Description |
---|---|
type[BaseModel]
|
A pydantic model that can be used to validate config. |
get_config_jsonschema
¶
Get a JSON schema that represents the config of the Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
include
|
Sequence[str] | None
|
A list of fields to include in the config schema. |
None
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A JSON schema that represents the config of the |
Added in version 0.3.0
get_graph
¶
Return a graph representation of this Runnable
.
get_prompts
¶
get_prompts(
config: RunnableConfig | None = None,
) -> list[BasePromptTemplate]
Return a list of prompts used by this Runnable
.
__or__
¶
__or__(
other: (
Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[
[AsyncIterator[Any]], AsyncIterator[Other]
]
| Callable[[Any], Other]
| Mapping[
str,
Runnable[Any, Other]
| Callable[[Any], Other]
| Any,
]
),
) -> RunnableSerializable[Input, Other]
Runnable "or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]
|
Another |
required |
Returns:
Type | Description |
---|---|
RunnableSerializable[Input, Other]
|
A new |
__ror__
¶
__ror__(
other: (
Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[
[AsyncIterator[Other]], AsyncIterator[Any]
]
| Callable[[Other], Any]
| Mapping[
str,
Runnable[Other, Any]
| Callable[[Other], Any]
| Any,
]
),
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]
|
Another |
required |
Returns:
Type | Description |
---|---|
RunnableSerializable[Other, Output]
|
A new |
pipe
¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other],
name: str | None = None
) -> RunnableSerializable[Input, Other]
Pipe runnables.
Compose this Runnable
with Runnable
-like objects to make a
RunnableSequence
.
Equivalent to RunnableSequence(self, *others)
or self | others[0] | ...
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*others
|
Runnable[Any, Other] | Callable[[Any], Other]
|
Other |
()
|
name
|
str | None
|
An optional name for the resulting |
None
|
Returns:
Type | Description |
---|---|
RunnableSerializable[Input, Other]
|
A new |
pick
¶
Pick keys from the output dict of this Runnable
.
Pick single key:
```python
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
```
Pick list of keys:
```python
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(
str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
```
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys
|
str | list[str]
|
A key or list of keys to pick from the output dict. |
required |
Returns:
Type | Description |
---|---|
RunnableSerializable[Any, Any]
|
a new |
assign
¶
assign(
**kwargs: (
Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[
str,
Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any],
]
),
) -> RunnableSerializable[Any, Any]
Assigns new fields to the dict output of this Runnable
.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]]
|
A mapping of keys to |
{}
|
Returns:
Type | Description |
---|---|
RunnableSerializable[Any, Any]
|
A new |
batch
¶
batch(
inputs: list[Input],
config: (
RunnableConfig | list[RunnableConfig] | None
) = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None
) -> list[Output]
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
list[Input]
|
A list of inputs to the |
required |
config
|
RunnableConfig | list[RunnableConfig] | None
|
A config to use when invoking the |
None
|
return_exceptions
|
bool
|
Whether to return exceptions instead of raising them. Defaults to False. |
False
|
**kwargs
|
Any | None
|
Additional keyword arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
list[Output]
|
A list of outputs from the |
batch_as_completed
¶
batch_as_completed(
inputs: Sequence[Input],
config: (
RunnableConfig | Sequence[RunnableConfig] | None
) = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None
) -> Iterator[tuple[int, Output | Exception]]
Run invoke
in parallel on a list of inputs.
Yields results as they complete.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Sequence[Input]
|
A list of inputs to the |
required |
config
|
RunnableConfig | Sequence[RunnableConfig] | None
|
A config to use when invoking the |
None
|
return_exceptions
|
bool
|
Whether to return exceptions instead of raising them. Defaults to False. |
False
|
**kwargs
|
Any | None
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
tuple[int, Output | Exception]
|
Tuples of the index of the input and the output from the |
abatch
async
¶
abatch(
inputs: list[Input],
config: (
RunnableConfig | list[RunnableConfig] | None
) = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None
) -> list[Output]
Default implementation runs ainvoke
in parallel using asyncio.gather
.
The default implementation of batch
works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
list[Input]
|
A list of inputs to the |
required |
config
|
RunnableConfig | list[RunnableConfig] | None
|
A config to use when invoking the |
None
|
return_exceptions
|
bool
|
Whether to return exceptions instead of raising them. Defaults to False. |
False
|
**kwargs
|
Any | None
|
Additional keyword arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
list[Output]
|
A list of outputs from the |
abatch_as_completed
async
¶
abatch_as_completed(
inputs: Sequence[Input],
config: (
RunnableConfig | Sequence[RunnableConfig] | None
) = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None
) -> AsyncIterator[tuple[int, Output | Exception]]
Run ainvoke
in parallel on a list of inputs.
Yields results as they complete.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Sequence[Input]
|
A list of inputs to the |
required |
config
|
RunnableConfig | Sequence[RunnableConfig] | None
|
A config to use when invoking the |
None
|
return_exceptions
|
bool
|
Whether to return exceptions instead of raising them. Defaults to False. |
False
|
kwargs
|
Any | None
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
A tuple of the index of the input and the output from the |
astream_log
async
¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
Stream all output from a Runnable
, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The Jsonpatch ops can be applied in order to construct state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Any
|
The input to the |
required |
config
|
RunnableConfig | None
|
The config to use for the |
None
|
diff
|
bool
|
Whether to yield diffs between each step or the current state. |
True
|
with_streamed_output_list
|
bool
|
Whether to yield the |
True
|
include_names
|
Sequence[str] | None
|
Only include logs with these names. |
None
|
include_types
|
Sequence[str] | None
|
Only include logs with these types. |
None
|
include_tags
|
Sequence[str] | None
|
Only include logs with these tags. |
None
|
exclude_names
|
Sequence[str] | None
|
Exclude logs with these names. |
None
|
exclude_types
|
Sequence[str] | None
|
Exclude logs with these types. |
None
|
exclude_tags
|
Sequence[str] | None
|
Exclude logs with these tags. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
A |
astream_events
async
¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any
) -> AsyncIterator[StreamEvent]
Generate a stream of events.
Use to create an iterator over StreamEvents
that provide real-time information
about the progress of the Runnable
, including StreamEvents
from intermediate
results.
A StreamEvent
is a dictionary with the following schema:
event
: str - Event names are of the format:on_[runnable_type]_(start|stream|end)
.name
: str - The name of theRunnable
that generated the event.run_id
: str - randomly generated ID associated with the given execution of theRunnable
that emitted the event. A childRunnable
that gets invoked as part of the execution of a parentRunnable
is assigned its own unique ID.parent_ids
: list[str] - The IDs of the parent runnables that generated the event. The rootRunnable
will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags
: Optional[list[str]] - The tags of theRunnable
that generated the event.metadata
: Optional[dict[str, Any]] - The metadata of theRunnable
that generated the event.data
: dict[str, Any]
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| event | name | chunk | input | output |
+==========================+==================+=====================================+===================================================+=====================================================+
| on_chat_model_start
| [model name] | | {"messages": [[SystemMessage, HumanMessage]]}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chat_model_stream
| [model name] | AIMessageChunk(content="hello")
| | |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chat_model_end
| [model name] | | {"messages": [[SystemMessage, HumanMessage]]}
| AIMessageChunk(content="hello world")
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_llm_start
| [model name] | | {'input': 'hello'}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_llm_stream
| [model name] | 'Hello'
| | |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_llm_end
| [model name] | | 'Hello human!'
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chain_start
| format_docs | | | |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chain_stream
| format_docs | 'hello world!, goodbye world!'
| | |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chain_end
| format_docs | | [Document(...)]
| 'hello world!, goodbye world!'
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_tool_start
| some_tool | | {"x": 1, "y": "2"}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_tool_end
| some_tool | | | {"x": 1, "y": "2"}
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_retriever_start
| [retriever name] | | {"query": "hello"}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_retriever_end
| [retriever name] | | {"query": "hello"}
| [Document(...), ..]
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_prompt_start
| [template_name] | | {"question": "hello"}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_prompt_end
| [template_name] | | {"question": "hello"}
| ChatPromptValue(messages: [SystemMessage, ...])
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
+-----------+------+-----------------------------------------------------------------------------------------------------------+ | Attribute | Type | Description | +===========+======+===========================================================================================================+ | name | str | A user defined name for the event. | +-----------+------+-----------------------------------------------------------------------------------------------------------+ | data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. | +-----------+------+-----------------------------------------------------------------------------------------------------------+
Here are declarations associated with the standard events shown above:
format_docs
:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool
:
prompt
:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Any
|
The input to the |
required |
config
|
RunnableConfig | None
|
The config to use for the |
None
|
version
|
Literal['v1', 'v2']
|
The version of the schema to use either |
'v2'
|
include_names
|
Sequence[str] | None
|
Only include events from |
None
|
include_types
|
Sequence[str] | None
|
Only include events from |
None
|
include_tags
|
Sequence[str] | None
|
Only include events from |
None
|
exclude_names
|
Sequence[str] | None
|
Exclude events from |
None
|
exclude_types
|
Sequence[str] | None
|
Exclude events from |
None
|
exclude_tags
|
Sequence[str] | None
|
Exclude events from |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
AsyncIterator[StreamEvent]
|
An async stream of |
Raises:
Type | Description |
---|---|
NotImplementedError
|
If the version is not |
transform
¶
transform(
input: Iterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None
) -> Iterator[Output]
Transform inputs to outputs.
Default implementation of transform, which buffers input and calls astream
.
Subclasses should override this method if they can start producing output while input is still being generated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Iterator[Input]
|
An iterator of inputs to the |
required |
config
|
RunnableConfig | None
|
The config to use for the |
None
|
kwargs
|
Any | None
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
Output
|
The output of the |
atransform
async
¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None
) -> AsyncIterator[Output]
Transform inputs to outputs.
Default implementation of atransform, which buffers input and calls astream
.
Subclasses should override this method if they can start producing output while input is still being generated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
AsyncIterator[Input]
|
An async iterator of inputs to the |
required |
config
|
RunnableConfig | None
|
The config to use for the |
None
|
kwargs
|
Any | None
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
AsyncIterator[Output]
|
The output of the |
bind
¶
bind(**kwargs: Any) -> Runnable[Input, Output]
Bind arguments to a Runnable
, returning a new Runnable
.
Useful when a Runnable
in a chain requires an argument that is not
in the output of the previous Runnable
or included in the user input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kwargs
|
Any
|
The arguments to bind to the |
{}
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
llm = ChatOllama(model="llama3.1")
# Without bind.
chain = llm | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind.
chain = llm.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config
¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
Bind config to a Runnable
, returning a new Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
RunnableConfig | None
|
The config to bind to the |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new |
with_listeners
¶
with_listeners(
*,
on_start: (
Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None
) = None,
on_end: (
Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None
) = None,
on_error: (
Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None
) = None
) -> Runnable[Input, Output]
Bind lifecycle listeners to a Runnable
, returning a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
on_start
|
Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None
|
Called before the |
None
|
on_end
|
Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None
|
Called after the |
None
|
on_error
|
Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None
|
Called if the |
None
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners
¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None
) -> Runnable[Input, Output]
Bind async lifecycle listeners to a Runnable
.
Returns a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
on_start
|
AsyncListener | None
|
Called asynchronously before the |
None
|
on_end
|
AsyncListener | None
|
Called asynchronously after the |
None
|
on_error
|
AsyncListener | None
|
Called asynchronously if the |
None
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types
¶
with_types(
*,
input_type: type[Input] | None = None,
output_type: type[Output] | None = None
) -> Runnable[Input, Output]
Bind input and output types to a Runnable
, returning a new Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_type
|
type[Input] | None
|
The input type to bind to the |
None
|
output_type
|
type[Output] | None
|
The output type to bind to the |
None
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new Runnable with the types bound. |
with_retry
¶
with_retry(
*,
retry_if_exception_type: tuple[
type[BaseException], ...
] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: (
ExponentialJitterParams | None
) = None,
stop_after_attempt: int = 3
) -> Runnable[Input, Output]
Create a new Runnable that retries the original Runnable on exceptions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
retry_if_exception_type
|
tuple[type[BaseException], ...]
|
A tuple of exception types to retry on. Defaults to (Exception,). |
(Exception,)
|
wait_exponential_jitter
|
bool
|
Whether to add jitter to the wait time between retries. Defaults to True. |
True
|
stop_after_attempt
|
int
|
The maximum number of attempts to make before giving up. Defaults to 3. |
3
|
exponential_jitter_params
|
ExponentialJitterParams | None
|
Parameters for
|
None
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new Runnable that retries the original Runnable on exceptions. |
Example
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map
¶
with_fallbacks
¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[
type[BaseException], ...
] = (Exception,),
exception_key: str | None = None
) -> RunnableWithFallbacks[Input, Output]
Add fallbacks to a Runnable
, returning a new Runnable
.
The new Runnable
will try the original Runnable
, and then each fallback
in order, upon failures.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fallbacks
|
Sequence[Runnable[Input, Output]]
|
A sequence of runnables to try if the original |
required |
exceptions_to_handle
|
tuple[type[BaseException], ...]
|
A tuple of exception types to handle.
Defaults to |
(Exception,)
|
exception_key
|
str | None
|
If string is specified then handled exceptions will be passed
to fallbacks as part of the input under the specified key.
If None, exceptions will not be passed to fallbacks.
If used, the base |
None
|
Returns:
Type | Description |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
RunnableWithFallbacks[Input, Output]
|
fallback in order, upon failures. |
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fallbacks
|
Sequence[Runnable[Input, Output]]
|
A sequence of runnables to try if the original |
required |
exceptions_to_handle
|
tuple[type[BaseException], ...]
|
A tuple of exception types to handle. |
(Exception,)
|
exception_key
|
str | None
|
If string is specified then handled exceptions will be passed
to fallbacks as part of the input under the specified key.
If None, exceptions will not be passed to fallbacks.
If used, the base |
None
|
Returns:
Type | Description |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
RunnableWithFallbacks[Input, Output]
|
fallback in order, upon failures. |
as_tool
¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None
) -> BaseTool
Create a BaseTool
from a Runnable
.
as_tool
will instantiate a BaseTool
with a name, description, and
args_schema
from a Runnable
. Where possible, schemas are inferred
from runnable.get_input_schema
. Alternatively (e.g., if the
Runnable
takes a dict as input and the specific dict keys are not typed),
the schema can be specified directly with args_schema
. You can also
pass arg_types
to just specify the required arguments and their types.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args_schema
|
type[BaseModel] | None
|
The schema for the tool. Defaults to None. |
None
|
name
|
str | None
|
The name of the tool. Defaults to None. |
None
|
description
|
str | None
|
The description of the tool. Defaults to None. |
None
|
arg_types
|
dict[str, type] | None
|
A dictionary of argument names to types. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
BaseTool
|
A |
Typed dict input:
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via args_schema
:
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via arg_types
:
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
String input:
from langchain_core.runnables import RunnableLambda
def f(x: str) -> str:
return x + "a"
def g(x: str) -> str:
return x + "z"
runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")
Added in version 0.2.14
is_lc_serializable
classmethod
¶
is_lc_serializable() -> bool
Is this class serializable?
By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.
Returns:
Type | Description |
---|---|
bool
|
Whether the class is serializable. Default is False. |
get_lc_namespace
classmethod
¶
lc_id
classmethod
¶
Return a unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
For example, for the class langchain.llms.openai.OpenAI
, the id is
["langchain", "llms", "openai", "OpenAI"].
to_json
¶
Serialize the Runnable
to JSON.
Returns:
Type | Description |
---|---|
SerializedConstructor | SerializedNotImplemented
|
A JSON-serializable representation of the |
to_json_not_implemented
¶
Serialize a "not implemented" object.
Returns:
Type | Description |
---|---|
SerializedNotImplemented
|
SerializedNotImplemented. |
configurable_fields
¶
Configure particular Runnable
fields at runtime.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
AnyConfigurableField
|
A dictionary of |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If a configuration key is not found in the |
Returns:
Type | Description |
---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives
¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: (
Runnable[Input, Output]
| Callable[[], Runnable[Input, Output]]
)
) -> RunnableSerializable[Input, Output]
Configure alternatives for Runnables
that can be set at runtime.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
which
|
ConfigurableField
|
The |
required |
default_key
|
str
|
The default key to use if no alternative is selected.
Defaults to |
'default'
|
prefix_keys
|
bool
|
Whether to prefix the keys with the |
False
|
**kwargs
|
Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]
|
A dictionary of keys to |
{}
|
Returns:
Type | Description |
---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose
¶
get_token_ids
¶
get_num_tokens
¶
get_num_tokens_from_messages
¶
Get the number of tokens in the messages.
Useful for checking if an input fits in a model's context window.
Note
The base implementation of get_num_tokens_from_messages
ignores tool
schemas.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
list[BaseMessage]
|
The message inputs to tokenize. |
required |
tools
|
Sequence | None
|
If provided, sequence of dict, |
None
|
Returns:
Type | Description |
---|---|
int
|
The sum of the number of tokens across the messages. |
generate
¶
generate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any
) -> LLMResult
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
list[list[BaseMessage]]
|
List of list of messages. |
required |
stop
|
list[str] | None
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
None
|
callbacks
|
Callbacks
|
Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. |
None
|
tags
|
list[str] | None
|
The tags to apply. |
None
|
metadata
|
dict[str, Any] | None
|
The metadata to apply. |
None
|
run_name
|
str | None
|
The name of the run. |
None
|
run_id
|
UUID | None
|
The ID of the run. |
None
|
**kwargs
|
Any
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call. |
{}
|
Returns:
Type | Description |
---|---|
LLMResult
|
An LLMResult, which contains a list of candidate Generations for each input |
LLMResult
|
prompt and additional model provider-specific output. |
agenerate
async
¶
agenerate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any
) -> LLMResult
Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
list[list[BaseMessage]]
|
List of list of messages. |
required |
stop
|
list[str] | None
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
None
|
callbacks
|
Callbacks
|
Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. |
None
|
tags
|
list[str] | None
|
The tags to apply. |
None
|
metadata
|
dict[str, Any] | None
|
The metadata to apply. |
None
|
run_name
|
str | None
|
The name of the run. |
None
|
run_id
|
UUID | None
|
The ID of the run. |
None
|
**kwargs
|
Any
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call. |
{}
|
Returns:
Type | Description |
---|---|
LLMResult
|
An LLMResult, which contains a list of candidate Generations for each input |
LLMResult
|
prompt and additional model provider-specific output. |
bind_tools
¶
bind_tools(
tools: Sequence[
Dict[str, Any] | type | Callable | BaseTool
],
*,
tool_choice: str | None = None,
**kwargs: Any
) -> Runnable[LanguageModelInput, AIMessage]
Bind tools to the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tools
|
Sequence[Dict[str, Any] | type | Callable | BaseTool]
|
Sequence of tools to bind to the model. |
required |
tool_choice
|
str | None
|
The tool to use. If "any" then any tool can be used. |
None
|
Returns:
Type | Description |
---|---|
Runnable[LanguageModelInput, AIMessage]
|
A Runnable that returns a message. |
build_extra
classmethod
¶
Build extra kwargs from additional params that were passed in.
validate_environment
¶
Validate that api key and python package exists in environment.
with_structured_output
¶
with_structured_output(
schema: Optional[_DictOrPydanticClass] = None,
*,
method: Literal["json_schema"] = "json_schema",
include_raw: bool = False,
strict: Optional[bool] = None,
**kwargs: Any
) -> Runnable[LanguageModelInput, _DictOrPydantic]
Model wrapper that returns outputs formatted to match the given schema for Preplexity.
Currently, Perplexity only supports "json_schema" method for structured output
as per their official documentation <https://docs.perplexity.ai/guides/structured-outputs>
__.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
schema
|
Optional[_DictOrPydanticClass]
|
The output schema. Can be passed in as:
|
None
|
method
|
Literal['json_schema']
|
The method for steering model generation, currently only support:
|
'json_schema'
|
include_raw
|
bool
|
If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys |
False
|
strict
|
Optional[bool]
|
Unsupported: whether to enable strict schema adherence when generating the output. This parameter is included for compatibility with other chat models, but is currently ignored. |
None
|
kwargs
|
Any
|
Additional keyword args aren't supported. |
{}
|
Returns:
Type | Description |
---|---|
Runnable[LanguageModelInput, _DictOrPydantic]
|
A Runnable that takes same inputs as a |
Runnable[LanguageModelInput, _DictOrPydantic]
|
If |
Runnable[LanguageModelInput, _DictOrPydantic]
|
an instance of |
Runnable[LanguageModelInput, _DictOrPydantic]
|
If |
Runnable[LanguageModelInput, _DictOrPydantic]
|
|
Runnable[LanguageModelInput, _DictOrPydantic]
|
|
Runnable[LanguageModelInput, _DictOrPydantic]
|
|