OpenAI
(Legacy LLM)¶
Reference docs
This page contains reference documentation for the legacy OpenAI
LLM. See
the docs
for conceptual guides, tutorials, and examples on using OpenAI
.
langchain_openai.llms.OpenAI
¶
Bases: BaseOpenAI
OpenAI completion model integration.
Setup
Install langchain-openai
and set environment variable OPENAI_API_KEY
.
Key init args — completion params:
model:
Name of OpenAI model to use.
temperature:
Sampling temperature.
max_tokens:
Max number of tokens to generate.
logprobs:
Whether to return logprobs.
stream_options:
Configure streaming outputs, like whether to return token usage when
streaming ({"include_usage": True}
).
Key init args — client params:
timeout:
Timeout for requests.
max_retries:
Max number of retries.
api_key:
OpenAI API key. If not passed in will be read from env var OPENAI_API_KEY
.
base_url:
Base URL for API requests. Only specify if using a proxy or service
emulator.
organization:
OpenAI organization ID. If not passed in will be read from env
var OPENAI_ORG_ID
.
See full list of supported init args and their descriptions in the params section.
Instantiate
Invoke
Stream
Async
METHOD | DESCRIPTION |
---|---|
get_name |
Get the name of the |
get_input_schema |
Get a Pydantic model that can be used to validate input to the |
get_input_jsonschema |
Get a JSON schema that represents the input to the |
get_output_schema |
Get a Pydantic model that can be used to validate output to the |
get_output_jsonschema |
Get a JSON schema that represents the output of the |
config_schema |
The type of config this |
get_config_jsonschema |
Get a JSON schema that represents the config of the |
get_graph |
Return a graph representation of this |
get_prompts |
Return a list of prompts used by this |
__or__ |
Runnable "or" operator. |
__ror__ |
Runnable "reverse-or" operator. |
pipe |
Pipe |
pick |
Pick keys from the output |
assign |
Assigns new fields to the |
invoke |
Transform a single input into an output. |
ainvoke |
Transform a single input into an output. |
batch |
Default implementation runs invoke in parallel using a thread pool executor. |
batch_as_completed |
Run |
abatch |
Default implementation runs |
abatch_as_completed |
Run |
stream |
Default implementation of |
astream |
Default implementation of |
astream_log |
Stream all output from a |
astream_events |
Generate a stream of events. |
transform |
Transform inputs to outputs. |
atransform |
Transform inputs to outputs. |
bind |
Bind arguments to a |
with_config |
Bind config to a |
with_listeners |
Bind lifecycle listeners to a |
with_alisteners |
Bind async lifecycle listeners to a |
with_types |
Bind input and output types to a |
with_retry |
Create a new |
map |
Return a new |
with_fallbacks |
Add fallbacks to a |
as_tool |
Create a |
__init__ |
|
lc_id |
Return a unique identifier for this class for serialization purposes. |
to_json |
Serialize the |
to_json_not_implemented |
Serialize a "not implemented" object. |
configurable_fields |
Configure particular |
configurable_alternatives |
Configure alternatives for |
set_verbose |
If verbose is |
generate_prompt |
Pass a sequence of prompts to the model and return model generations. |
agenerate_prompt |
Asynchronously pass a sequence of prompts and return model generations. |
with_structured_output |
Not implemented on this class. |
get_token_ids |
Get the token IDs using the tiktoken package. |
get_num_tokens |
Get the number of tokens present in the text. |
get_num_tokens_from_messages |
Get the number of tokens in the messages. |
generate |
Pass a sequence of prompts to a model and return generations. |
agenerate |
Asynchronously pass a sequence of prompts to a model and return generations. |
__str__ |
Return a string representation of the object for printing. |
dict |
Return a dictionary of the LLM. |
save |
Save the LLM. |
build_extra |
Build extra kwargs from additional params that were passed in. |
validate_environment |
Validate that api key and python package exists in environment. |
get_sub_prompts |
Get the sub prompts for llm call. |
create_llm_result |
Create the LLMResult from the choices and prompts. |
modelname_to_contextsize |
Calculate the maximum number of tokens possible to generate for a model. |
max_tokens_for_prompt |
Calculate the maximum number of tokens possible to generate for a prompt. |
get_lc_namespace |
Get the namespace of the LangChain object. |
is_lc_serializable |
Return whether this model can be serialized by LangChain. |
name
class-attribute
instance-attribute
¶
name: str | None = None
The name of the Runnable
. Used for debugging and tracing.
input_schema
property
¶
The type of input this Runnable
accepts specified as a Pydantic model.
output_schema
property
¶
Output schema.
The type of output this Runnable
produces specified as a Pydantic model.
config_specs
property
¶
config_specs: list[ConfigurableFieldSpec]
List configurable fields for this Runnable
.
cache
class-attribute
instance-attribute
¶
Whether to cache the response.
- If
True
, will use the global cache. - If
False
, will not use a cache - If
None
, will use the global cache if it's set, otherwise no cache. - If instance of
BaseCache
, will use the provided cache.
Caching is not currently supported for streaming methods of models.
verbose
class-attribute
instance-attribute
¶
Whether to print out response text.
callbacks
class-attribute
instance-attribute
¶
callbacks: Callbacks = Field(default=None, exclude=True)
Callbacks to add to the run trace.
tags
class-attribute
instance-attribute
¶
Tags to add to the run trace.
metadata
class-attribute
instance-attribute
¶
Metadata to add to the run trace.
custom_get_token_ids
class-attribute
instance-attribute
¶
Optional encoder to use for counting tokens.
model_name
class-attribute
instance-attribute
¶
Model name to use.
temperature
class-attribute
instance-attribute
¶
temperature: float = 0.7
What sampling temperature to use.
max_tokens
class-attribute
instance-attribute
¶
max_tokens: int = 256
The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.
top_p
class-attribute
instance-attribute
¶
top_p: float = 1
Total probability mass of tokens to consider at each step.
frequency_penalty
class-attribute
instance-attribute
¶
frequency_penalty: float = 0
Penalizes repeated tokens according to frequency.
presence_penalty
class-attribute
instance-attribute
¶
presence_penalty: float = 0
Penalizes repeated tokens.
best_of
class-attribute
instance-attribute
¶
best_of: int = 1
Generates best_of completions server-side and returns the "best".
model_kwargs
class-attribute
instance-attribute
¶
Holds any model parameters valid for create
call not explicitly specified.
openai_api_key
class-attribute
instance-attribute
¶
openai_api_key: SecretStr | None = Field(
alias="api_key", default_factory=secret_from_env("OPENAI_API_KEY", default=None)
)
Automatically inferred from env var OPENAI_API_KEY
if not provided.
openai_api_base
class-attribute
instance-attribute
¶
openai_api_base: str | None = Field(
alias="base_url", default_factory=from_env("OPENAI_API_BASE", default=None)
)
Base URL path for API requests, leave blank if not using a proxy or service emulator.
openai_organization
class-attribute
instance-attribute
¶
openai_organization: str | None = Field(
alias="organization",
default_factory=from_env(["OPENAI_ORG_ID", "OPENAI_ORGANIZATION"], default=None),
)
Automatically inferred from env var OPENAI_ORG_ID
if not provided.
batch_size
class-attribute
instance-attribute
¶
batch_size: int = 20
Batch size to use when passing multiple documents to generate.
request_timeout
class-attribute
instance-attribute
¶
Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout
or
None.
logit_bias
class-attribute
instance-attribute
¶
Adjust the probability of specific tokens being generated.
max_retries
class-attribute
instance-attribute
¶
max_retries: int = 2
Maximum number of retries to make when generating.
logprobs
class-attribute
instance-attribute
¶
logprobs: int | None = None
Include the log probabilities on the logprobs most likely output tokens, as well the chosen tokens.
streaming
class-attribute
instance-attribute
¶
streaming: bool = False
Whether to stream the results or not.
allowed_special
class-attribute
instance-attribute
¶
Set of special tokens that are allowed。
disallowed_special
class-attribute
instance-attribute
¶
disallowed_special: Literal['all'] | Collection[str] = 'all'
Set of special tokens that are not allowed。
tiktoken_model_name
class-attribute
instance-attribute
¶
tiktoken_model_name: str | None = None
The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.
http_client
class-attribute
instance-attribute
¶
http_client: Any | None = None
Optional httpx.Client
. Only used for sync invocations. Must specify
http_async_client
as well if you'd like a custom client for async
invocations.
http_async_client
class-attribute
instance-attribute
¶
http_async_client: Any | None = None
Optional httpx.AsyncClient
. Only used for async invocations. Must specify
http_client
as well if you'd like a custom client for sync invocations.
extra_body
class-attribute
instance-attribute
¶
Optional additional JSON properties to include in the request parameters when making requests to OpenAI compatible APIs, such as vLLM.
get_name
¶
get_input_schema
¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate input to the Runnable
.
Runnable
objects that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic input schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an input schema for a specific configuration.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
type[BaseModel]
|
A Pydantic model that can be used to validate input. |
get_input_jsonschema
¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the input to the Runnable
.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict[str, Any]
|
A JSON schema that represents the input to the |
Example
Added in version 0.3.0
get_output_schema
¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate output to the Runnable
.
Runnable
objects that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic output schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an output schema for a specific configuration.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
type[BaseModel]
|
A Pydantic model that can be used to validate output. |
get_output_jsonschema
¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the output of the Runnable
.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict[str, Any]
|
A JSON schema that represents the output of the |
Example
Added in version 0.3.0
config_schema
¶
The type of config this Runnable
accepts specified as a Pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives
methods.
PARAMETER | DESCRIPTION |
---|---|
include
|
A list of fields to include in the config schema. |
RETURNS | DESCRIPTION |
---|---|
type[BaseModel]
|
A Pydantic model that can be used to validate config. |
get_config_jsonschema
¶
get_graph
¶
get_graph(config: RunnableConfig | None = None) -> Graph
Return a graph representation of this Runnable
.
get_prompts
¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
Return a list of prompts used by this Runnable
.
__or__
¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
PARAMETER | DESCRIPTION |
---|---|
other
|
Another
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Other]
|
A new |
__ror__
¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
PARAMETER | DESCRIPTION |
---|---|
other
|
Another
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Other, Output]
|
A new |
pipe
¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
Pipe Runnable
objects.
Compose this Runnable
with Runnable
-like objects to make a
RunnableSequence
.
Equivalent to RunnableSequence(self, *others)
or self | others[0] | ...
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
PARAMETER | DESCRIPTION |
---|---|
*others
|
Other
TYPE:
|
name
|
An optional name for the resulting
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Other]
|
A new |
pick
¶
Pick keys from the output dict
of this Runnable
.
Pick a single key:
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick a list of keys:
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
PARAMETER | DESCRIPTION |
---|---|
keys
|
A key or list of keys to pick from the output dict. |
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Any, Any]
|
a new |
assign
¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
Assigns new fields to the dict
output of this Runnable
.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
A mapping of keys to
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Any, Any]
|
A new |
invoke
¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> str
Transform a single input into an output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Output
|
The output of the |
ainvoke
async
¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> str
Transform a single input into an output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Output
|
The output of the |
batch
¶
batch(
inputs: list[LanguageModelInput],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> list[str]
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Output]
|
A list of outputs from the |
batch_as_completed
¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
Run invoke
in parallel on a list of inputs.
Yields results as they complete.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
tuple[int, Output | Exception]
|
Tuples of the index of the input and the output from the |
abatch
async
¶
abatch(
inputs: list[LanguageModelInput],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> list[str]
Default implementation runs ainvoke
in parallel using asyncio.gather
.
The default implementation of batch
works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Output]
|
A list of outputs from the |
abatch_as_completed
async
¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
Run ainvoke
in parallel on a list of inputs.
Yields results as they complete.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
A tuple of the index of the input and the output from the |
stream
¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[str]
Default implementation of stream
, which calls invoke
.
Subclasses must override this method if they support streaming output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
Output
|
The output of the |
astream
async
¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[str]
Default implementation of astream
, which calls ainvoke
.
Subclasses must override this method if they support streaming output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[Output]
|
The output of the |
astream_log
async
¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
Stream all output from a Runnable
, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The Jsonpatch ops can be applied in order to construct state.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
diff
|
Whether to yield diffs between each step or the current state.
TYPE:
|
with_streamed_output_list
|
Whether to yield the
TYPE:
|
include_names
|
Only include logs with these names. |
include_types
|
Only include logs with these types. |
include_tags
|
Only include logs with these tags. |
exclude_names
|
Exclude logs with these names. |
exclude_types
|
Exclude logs with these types. |
exclude_tags
|
Exclude logs with these tags. |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
A |
astream_events
async
¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
Generate a stream of events.
Use to create an iterator over StreamEvent
that provide real-time information
about the progress of the Runnable
, including StreamEvent
from intermediate
results.
A StreamEvent
is a dictionary with the following schema:
event
: Event names are of the format:on_[runnable_type]_(start|stream|end)
.name
: The name of theRunnable
that generated the event.run_id
: Randomly generated ID associated with the given execution of theRunnable
that emitted the event. A childRunnable
that gets invoked as part of the execution of a parentRunnable
is assigned its own unique ID.parent_ids
: The IDs of the parent runnables that generated the event. The rootRunnable
will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags
: The tags of theRunnable
that generated the event.metadata
: The metadata of theRunnable
that generated the event.data
: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
event | name | chunk | input | output |
---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'Hello' |
||
on_llm_end |
'[model name]' |
'Hello human!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute | Type | Description |
---|---|---|
name |
str |
A user defined name for the event. |
data |
Any |
The data associated with the event. This can be anything, though we suggest making it JSON serializable. |
Here are declarations associated with the standard events shown above:
format_docs
:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool
:
prompt
:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
For instance:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
version
|
The version of the schema to use either
TYPE:
|
include_names
|
Only include events from |
include_types
|
Only include events from |
include_tags
|
Only include events from |
exclude_names
|
Exclude events from |
exclude_types
|
Exclude events from |
exclude_tags
|
Exclude events from |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[StreamEvent]
|
An async stream of |
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
If the version is not |
transform
¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
Transform inputs to outputs.
Default implementation of transform, which buffers input and calls astream
.
Subclasses must override this method if they can start producing output while input is still being generated.
PARAMETER | DESCRIPTION |
---|---|
input
|
An iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
Output
|
The output of the |
atransform
async
¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
Transform inputs to outputs.
Default implementation of atransform, which buffers input and calls astream
.
Subclasses must override this method if they can start producing output while input is still being generated.
PARAMETER | DESCRIPTION |
---|---|
input
|
An async iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[Output]
|
The output of the |
bind
¶
Bind arguments to a Runnable
, returning a new Runnable
.
Useful when a Runnable
in a chain requires an argument that is not
in the output of the previous Runnable
or included in the user input.
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
The arguments to bind to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config
¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
Bind config to a Runnable
, returning a new Runnable
.
PARAMETER | DESCRIPTION |
---|---|
config
|
The config to bind to the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
with_listeners
¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
Bind lifecycle listeners to a Runnable
, returning a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
PARAMETER | DESCRIPTION |
---|---|
on_start
|
Called before the
TYPE:
|
on_end
|
Called after the
TYPE:
|
on_error
|
Called if the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners
¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
Bind async lifecycle listeners to a Runnable
.
Returns a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
PARAMETER | DESCRIPTION |
---|---|
on_start
|
Called asynchronously before the
TYPE:
|
on_end
|
Called asynchronously after the
TYPE:
|
on_error
|
Called asynchronously if the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types
¶
with_types(
*, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]
Bind input and output types to a Runnable
, returning a new Runnable
.
PARAMETER | DESCRIPTION |
---|---|
input_type
|
The input type to bind to the
TYPE:
|
output_type
|
The output type to bind to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
with_retry
¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
Create a new Runnable
that retries the original Runnable
on exceptions.
PARAMETER | DESCRIPTION |
---|---|
retry_if_exception_type
|
A tuple of exception types to retry on.
TYPE:
|
wait_exponential_jitter
|
Whether to add jitter to the wait time between retries.
TYPE:
|
stop_after_attempt
|
The maximum number of attempts to make before giving up.
TYPE:
|
exponential_jitter_params
|
Parameters for
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new Runnable that retries the original Runnable on exceptions. |
Example
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map
¶
with_fallbacks
¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
Add fallbacks to a Runnable
, returning a new Runnable
.
The new Runnable
will try the original Runnable
, and then each fallback
in order, upon failures.
PARAMETER | DESCRIPTION |
---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
PARAMETER | DESCRIPTION |
---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
as_tool
¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
Create a BaseTool
from a Runnable
.
as_tool
will instantiate a BaseTool
with a name, description, and
args_schema
from a Runnable
. Where possible, schemas are inferred
from runnable.get_input_schema
. Alternatively (e.g., if the
Runnable
takes a dict as input and the specific dict keys are not typed),
the schema can be specified directly with args_schema
. You can also
pass arg_types
to just specify the required arguments and their types.
PARAMETER | DESCRIPTION |
---|---|
args_schema
|
The schema for the tool. |
name
|
The name of the tool.
TYPE:
|
description
|
The description of the tool.
TYPE:
|
arg_types
|
A dictionary of argument names to types. |
RETURNS | DESCRIPTION |
---|---|
BaseTool
|
A |
Typed dict input:
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via args_schema
:
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via arg_types
:
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
String input:
from langchain_core.runnables import RunnableLambda
def f(x: str) -> str:
return x + "a"
def g(x: str) -> str:
return x + "z"
runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")
Added in version 0.2.14
lc_id
classmethod
¶
Return a unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
For example, for the class langchain.llms.openai.OpenAI
, the id is
["langchain", "llms", "openai", "OpenAI"]
.
to_json
¶
Serialize the Runnable
to JSON.
RETURNS | DESCRIPTION |
---|---|
SerializedConstructor | SerializedNotImplemented
|
A JSON-serializable representation of the |
to_json_not_implemented
¶
Serialize a "not implemented" object.
RETURNS | DESCRIPTION |
---|---|
SerializedNotImplemented
|
|
configurable_fields
¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
Configure particular Runnable
fields at runtime.
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
A dictionary of
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If a configuration key is not found in the |
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives
¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
Configure alternatives for Runnable
objects that can be set at runtime.
PARAMETER | DESCRIPTION |
---|---|
which
|
The
TYPE:
|
default_key
|
The default key to use if no alternative is selected.
TYPE:
|
prefix_keys
|
Whether to prefix the keys with the
TYPE:
|
**kwargs
|
A dictionary of keys to
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose
¶
generate_prompt
¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
**kwargs: Any,
) -> LLMResult
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER | DESCRIPTION |
---|---|
prompts
|
List of
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
LLMResult
|
An |
agenerate_prompt
async
¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
**kwargs: Any,
) -> LLMResult
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER | DESCRIPTION |
---|---|
prompts
|
List of
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
LLMResult
|
An |
with_structured_output
¶
with_structured_output(
schema: dict | type, **kwargs: Any
) -> Runnable[LanguageModelInput, dict | BaseModel]
Not implemented on this class.
get_num_tokens
¶
get_num_tokens_from_messages
¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
Get the number of tokens in the messages.
Useful for checking if an input fits in a model's context window.
Note
The base implementation of get_num_tokens_from_messages
ignores tool
schemas.
PARAMETER | DESCRIPTION |
---|---|
messages
|
The message inputs to tokenize.
TYPE:
|
tools
|
If provided, sequence of dict,
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
int
|
The sum of the number of tokens across the messages. |
generate
¶
generate(
prompts: list[str],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
*,
tags: list[str] | list[list[str]] | None = None,
metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
run_name: str | list[str] | None = None,
run_id: UUID | list[UUID | None] | None = None,
**kwargs: Any,
) -> LLMResult
Pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER | DESCRIPTION |
---|---|
prompts
|
List of string prompts. |
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
TYPE:
|
tags
|
List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list. |
metadata
|
List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.
TYPE:
|
run_name
|
List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list. |
run_id
|
List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list. |
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If prompts is not a list. |
ValueError
|
If the length of |
RETURNS | DESCRIPTION |
---|---|
LLMResult
|
An |
agenerate
async
¶
agenerate(
prompts: list[str],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
*,
tags: list[str] | list[list[str]] | None = None,
metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
run_name: str | list[str] | None = None,
run_id: UUID | list[UUID | None] | None = None,
**kwargs: Any,
) -> LLMResult
Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER | DESCRIPTION |
---|---|
prompts
|
List of string prompts. |
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
TYPE:
|
tags
|
List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list. |
metadata
|
List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.
TYPE:
|
run_name
|
List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list. |
run_id
|
List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list. |
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the length of |
RETURNS | DESCRIPTION |
---|---|
LLMResult
|
An |
save
¶
Save the LLM.
PARAMETER | DESCRIPTION |
---|---|
file_path
|
Path to file to save the LLM to. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the file path is not a string or Path object. |
build_extra
classmethod
¶
Build extra kwargs from additional params that were passed in.
validate_environment
¶
validate_environment() -> Self
Validate that api key and python package exists in environment.
get_sub_prompts
¶
get_sub_prompts(
params: dict[str, Any], prompts: list[str], stop: list[str] | None = None
) -> list[list[str]]
Get the sub prompts for llm call.
create_llm_result
¶
create_llm_result(
choices: Any,
prompts: list[str],
params: dict[str, Any],
token_usage: dict[str, int],
*,
system_fingerprint: str | None = None,
) -> LLMResult
Create the LLMResult from the choices and prompts.
modelname_to_contextsize
staticmethod
¶
max_tokens_for_prompt
¶
get_lc_namespace
classmethod
¶
Get the namespace of the LangChain object.