BaseChatOpenAI
¶
langchain_openai.chat_models.base
¶
OpenAI chat wrapper.
BaseChatOpenAI
¶
Bases: BaseChatModel
Base wrapper around OpenAI large language models for chat.
METHOD | DESCRIPTION |
---|---|
build_extra |
Build extra kwargs from additional params that were passed in. |
validate_temperature |
Validate temperature parameter for different models. |
validate_environment |
Validate that api key and python package exists in environment. |
get_token_ids |
Get the tokens present in the text with tiktoken package. |
get_num_tokens_from_messages |
Calculate num tokens for |
bind_tools |
Bind tool-like objects to this chat model. |
with_structured_output |
Model wrapper that returns outputs formatted to match the given schema. |
get_name |
Get the name of the |
get_input_schema |
Get a Pydantic model that can be used to validate input to the |
get_input_jsonschema |
Get a JSON schema that represents the input to the |
get_output_schema |
Get a Pydantic model that can be used to validate output to the |
get_output_jsonschema |
Get a JSON schema that represents the output of the |
config_schema |
The type of config this |
get_config_jsonschema |
Get a JSON schema that represents the config of the |
get_graph |
Return a graph representation of this |
get_prompts |
Return a list of prompts used by this |
__or__ |
Runnable "or" operator. |
__ror__ |
Runnable "reverse-or" operator. |
pipe |
Pipe |
pick |
Pick keys from the output |
assign |
Assigns new fields to the |
invoke |
Transform a single input into an output. |
ainvoke |
Transform a single input into an output. |
batch |
Default implementation runs invoke in parallel using a thread pool executor. |
batch_as_completed |
Run |
abatch |
Default implementation runs |
abatch_as_completed |
Run |
stream |
Default implementation of |
astream |
Default implementation of |
astream_log |
Stream all output from a |
astream_events |
Generate a stream of events. |
transform |
Transform inputs to outputs. |
atransform |
Transform inputs to outputs. |
bind |
Bind arguments to a |
with_config |
Bind config to a |
with_listeners |
Bind lifecycle listeners to a |
with_alisteners |
Bind async lifecycle listeners to a |
with_types |
Bind input and output types to a |
with_retry |
Create a new |
map |
Return a new |
with_fallbacks |
Add fallbacks to a |
as_tool |
Create a |
__init__ |
|
is_lc_serializable |
Is this class serializable? |
get_lc_namespace |
Get the namespace of the LangChain object. |
lc_id |
Return a unique identifier for this class for serialization purposes. |
to_json |
Serialize the |
to_json_not_implemented |
Serialize a "not implemented" object. |
configurable_fields |
Configure particular |
configurable_alternatives |
Configure alternatives for |
set_verbose |
If verbose is |
generate_prompt |
Pass a sequence of prompts to the model and return model generations. |
agenerate_prompt |
Asynchronously pass a sequence of prompts and return model generations. |
get_num_tokens |
Get the number of tokens present in the text. |
generate |
Pass a sequence of prompts to the model and return model generations. |
agenerate |
Asynchronously pass a sequence of prompts to a model and return generations. |
dict |
Return a dictionary of the LLM. |
model_name
class-attribute
instance-attribute
¶
Model name to use.
temperature
class-attribute
instance-attribute
¶
temperature: float | None = None
What sampling temperature to use.
model_kwargs
class-attribute
instance-attribute
¶
Holds any model parameters valid for create
call not explicitly specified.
openai_api_base
class-attribute
instance-attribute
¶
Base URL path for API requests, leave blank if not using a proxy or service emulator.
openai_organization
class-attribute
instance-attribute
¶
Automatically inferred from env var OPENAI_ORG_ID
if not provided.
request_timeout
class-attribute
instance-attribute
¶
Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout
or
None
.
stream_usage
class-attribute
instance-attribute
¶
stream_usage: bool | None = None
Whether to include usage metadata in streaming output. If enabled, an additional message chunk will be generated during the stream including usage metadata.
This parameter is enabled unless openai_api_base
is set or the model is
initialized with a custom client, as many chat completions APIs do not support
streaming token usage.
Added in version 0.3.9
Behavior changed in 0.3.35
Enabled for default base URL and client.
max_retries
class-attribute
instance-attribute
¶
max_retries: int | None = None
Maximum number of retries to make when generating.
presence_penalty
class-attribute
instance-attribute
¶
presence_penalty: float | None = None
Penalizes repeated tokens.
frequency_penalty
class-attribute
instance-attribute
¶
frequency_penalty: float | None = None
Penalizes repeated tokens according to frequency.
logprobs
class-attribute
instance-attribute
¶
logprobs: bool | None = None
Whether to return logprobs.
top_logprobs
class-attribute
instance-attribute
¶
top_logprobs: int | None = None
Number of most likely tokens to return at each token position, each with an
associated log probability. logprobs
must be set to true if this parameter is
used.
logit_bias
class-attribute
instance-attribute
¶
Modify the likelihood of specified tokens appearing in the completion.
streaming
class-attribute
instance-attribute
¶
streaming: bool = False
Whether to stream the results or not.
n
class-attribute
instance-attribute
¶
n: int | None = None
Number of chat completions to generate for each prompt.
top_p
class-attribute
instance-attribute
¶
top_p: float | None = None
Total probability mass of tokens to consider at each step.
max_tokens
class-attribute
instance-attribute
¶
Maximum number of tokens to generate.
reasoning_effort
class-attribute
instance-attribute
¶
reasoning_effort: str | None = None
Constrains effort on reasoning for reasoning models. For use with the Chat Completions API.
Reasoning models only.
Currently supported values are 'minimal'
, 'low'
, 'medium'
, and
'high'
. Reducing reasoning effort can result in faster responses and fewer
tokens used on reasoning in a response.
reasoning
class-attribute
instance-attribute
¶
verbosity
class-attribute
instance-attribute
¶
verbosity: str | None = None
Controls the verbosity level of responses for reasoning models. For use with the Responses API.
Currently supported values are 'low'
, 'medium'
, and 'high'
.
Added in version 0.3.28
tiktoken_model_name
class-attribute
instance-attribute
¶
tiktoken_model_name: str | None = None
The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.
http_client
class-attribute
instance-attribute
¶
Optional httpx.Client
. Only used for sync invocations. Must specify
http_async_client
as well if you'd like a custom client for async invocations.
http_async_client
class-attribute
instance-attribute
¶
Optional httpx.AsyncClient
. Only used for async invocations. Must specify
http_client
as well if you'd like a custom client for sync invocations.
stop
class-attribute
instance-attribute
¶
Default stop sequences.
extra_body
class-attribute
instance-attribute
¶
Optional additional JSON properties to include in the request parameters when making requests to OpenAI compatible APIs, such as vLLM, LM Studio, or other providers.
This is the recommended way to pass custom parameters that are specific to your OpenAI-compatible API provider but not part of the standard OpenAI API.
Examples:
- LM Studio TTL parameter:
extra_body={"ttl": 300}
- vLLM custom parameters:
extra_body={"use_beam_search": True}
- Any other provider-specific parameters
Warning
Do not use model_kwargs
for custom parameters that are not part of the
standard OpenAI API, as this will cause errors when making API calls. Use
extra_body
instead.
include_response_headers
class-attribute
instance-attribute
¶
include_response_headers: bool = False
Whether to include response headers in the output message response_metadata
.
disabled_params
class-attribute
instance-attribute
¶
Parameters of the OpenAI client or chat.completions
endpoint that should be
disabled for the given model.
Should be specified as {"param": None | ['val1', 'val2']}
where the key is the
parameter and the value is either None, meaning that parameter should never be
used, or it's a list of disabled values for the parameter.
For example, older models may not support the 'parallel_tool_calls'
parameter at
all, in which case disabled_params={"parallel_tool_calls": None}
can be passed
in.
If a parameter is disabled then it will not be used by default in any methods, e.g.
in with_structured_output
. However this does not prevent a user from directly
passed in the parameter during invocation.
include
class-attribute
instance-attribute
¶
Additional fields to include in generations from Responses API.
Supported values:
'file_search_call.results'
'message.input_image.image_url'
'computer_call_output.output.image_url'
'reasoning.encrypted_content'
'code_interpreter_call.outputs'
Added in version 0.3.24
service_tier
class-attribute
instance-attribute
¶
service_tier: str | None = None
Latency tier for request. Options are 'auto'
, 'default'
, or 'flex'
.
Relevant for users of OpenAI's scale tier service.
store
class-attribute
instance-attribute
¶
store: bool | None = None
If True
, OpenAI may store response data for future use.
Defaults to True
for the Responses API and False
for the Chat Completions API.
Added in version 0.3.24
truncation
class-attribute
instance-attribute
¶
truncation: str | None = None
Truncation strategy (Responses API). Can be 'auto'
or 'disabled'
(default).
If 'auto'
, model may drop input items from the middle of the message sequence to
fit the context window.
Added in version 0.3.24
use_previous_response_id
class-attribute
instance-attribute
¶
use_previous_response_id: bool = False
If True
, always pass previous_response_id
using the ID of the most recent
response. Responses API only.
Input messages up to the most recent response will be dropped from request payloads.
For example, the following two are equivalent:
model = ChatOpenAI(
model="...",
use_previous_response_id=True,
)
model.invoke(
[
HumanMessage("Hello"),
AIMessage("Hi there!", response_metadata={"id": "resp_123"}),
HumanMessage("How are you?"),
]
)
model = ChatOpenAI(model="...", use_responses_api=True)
model.invoke([HumanMessage("How are you?")], previous_response_id="resp_123")
Added in version 0.3.26
use_responses_api
class-attribute
instance-attribute
¶
use_responses_api: bool | None = None
Whether to use the Responses API instead of the Chat API.
If not specified then will be inferred based on invocation params.
Added in version 0.3.9
output_version
class-attribute
instance-attribute
¶
Version of AIMessage
output format to use.
This field is used to roll-out new output formats for chat model AIMessage
responses in a backwards-compatible way.
Supported values:
'v0'
:AIMessage
format as oflangchain-openai 0.3.x
.'responses/v1'
: Formats Responses API output items into AIMessage content blocks (Responses API only)'v1'
: v1 of LangChain cross-provider standard.
Behavior changed in 1.0.0
Default updated to "responses/v1"
.
name
class-attribute
instance-attribute
¶
name: str | None = None
The name of the Runnable
. Used for debugging and tracing.
input_schema
property
¶
The type of input this Runnable
accepts specified as a Pydantic model.
output_schema
property
¶
Output schema.
The type of output this Runnable
produces specified as a Pydantic model.
config_specs
property
¶
config_specs: list[ConfigurableFieldSpec]
List configurable fields for this Runnable
.
lc_secrets
property
¶
A map of constructor argument names to secret ids.
For example, {"openai_api_key": "OPENAI_API_KEY"}
lc_attributes
property
¶
lc_attributes: dict
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
Default is an empty dictionary.
cache
class-attribute
instance-attribute
¶
Whether to cache the response.
- If
True
, will use the global cache. - If
False
, will not use a cache - If
None
, will use the global cache if it's set, otherwise no cache. - If instance of
BaseCache
, will use the provided cache.
Caching is not currently supported for streaming methods of models.
verbose
class-attribute
instance-attribute
¶
Whether to print out response text.
callbacks
class-attribute
instance-attribute
¶
callbacks: Callbacks = Field(default=None, exclude=True)
Callbacks to add to the run trace.
tags
class-attribute
instance-attribute
¶
Tags to add to the run trace.
metadata
class-attribute
instance-attribute
¶
Metadata to add to the run trace.
custom_get_token_ids
class-attribute
instance-attribute
¶
Optional encoder to use for counting tokens.
rate_limiter
class-attribute
instance-attribute
¶
rate_limiter: BaseRateLimiter | None = Field(default=None, exclude=True)
An optional rate limiter to use for limiting the number of requests.
disable_streaming
class-attribute
instance-attribute
¶
Whether to disable streaming for this model.
If streaming is bypassed, then stream
/astream
/astream_events
will
defer to invoke
/ainvoke
.
- If
True
, will always bypass streaming case. - If
'tool_calling'
, will bypass streaming case only when the model is called with atools
keyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke
) only when the tools argument is provided. This offers the best of both worlds. - If
False
(Default), will always use streaming case if available.
The main reason for this flag is that code might be written using stream
and
a user may want to swap out a given model for another model whose the implementation
does not properly support streaming.
build_extra
classmethod
¶
Build extra kwargs from additional params that were passed in.
validate_temperature
classmethod
¶
Validate temperature parameter for different models.
- gpt-5 models (excluding gpt-5-chat) only allow
temperature=1
or unset (Defaults to 1)
validate_environment
¶
validate_environment() -> Self
Validate that api key and python package exists in environment.
get_token_ids
¶
Get the tokens present in the text with tiktoken package.
get_num_tokens_from_messages
¶
get_num_tokens_from_messages(
messages: Sequence[BaseMessage],
tools: Sequence[dict[str, Any] | type | Callable | BaseTool] | None = None,
) -> int
Calculate num tokens for gpt-3.5-turbo
and gpt-4
with tiktoken
package.
Warning
You must have the pillow
installed if you want to count image tokens if
you are specifying the image as a base64 string, and you must have both
pillow
and httpx
installed if you are specifying the image as a URL. If
these aren't installed image inputs will be ignored in token counting.
PARAMETER | DESCRIPTION |
---|---|
messages
|
The message inputs to tokenize.
TYPE:
|
tools
|
If provided, sequence of
TYPE:
|
bind_tools
¶
bind_tools(
tools: Sequence[dict[str, Any] | type | Callable | BaseTool],
*,
tool_choice: dict | str | bool | None = None,
strict: bool | None = None,
parallel_tool_calls: bool | None = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, AIMessage]
Bind tool-like objects to this chat model.
Assumes model is compatible with OpenAI tool-calling API.
PARAMETER | DESCRIPTION |
---|---|
tools
|
A list of tool definitions to bind to this chat model.
Supports any tool definition handled by
|
tool_choice
|
Which tool to require the model to call. Options are:
|
strict
|
If
TYPE:
|
parallel_tool_calls
|
Set to
TYPE:
|
kwargs
|
Any additional parameters are passed directly to
TYPE:
|
with_structured_output
¶
with_structured_output(
schema: _DictOrPydanticClass | None = None,
*,
method: Literal[
"function_calling", "json_mode", "json_schema"
] = "function_calling",
include_raw: bool = False,
strict: bool | None = None,
tools: list | None = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, _DictOrPydantic]
Model wrapper that returns outputs formatted to match the given schema.
PARAMETER | DESCRIPTION |
---|---|
schema
|
The output schema. Can be passed in as:
If See
TYPE:
|
method
|
The method for steering model generation, one of:
TYPE:
|
include_raw
|
If The final output is always a
TYPE:
|
strict
|
TYPE:
|
tools
|
A list of tool-like objects to bind to the chat model. Requires that:
If a model elects to call a tool, the resulting Example
TYPE:
|
kwargs
|
Additional keyword args are passed through to the model.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[LanguageModelInput, _DictOrPydantic]
|
A If
|
Behavior changed in 0.3.12
Support for tools
added.
Behavior changed in 0.3.21
Pass kwargs
through to the model.
get_name
¶
get_input_schema
¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate input to the Runnable
.
Runnable
objects that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic input schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an input schema for a specific configuration.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
type[BaseModel]
|
A Pydantic model that can be used to validate input. |
get_input_jsonschema
¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the input to the Runnable
.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict[str, Any]
|
A JSON schema that represents the input to the |
Example
Added in version 0.3.0
get_output_schema
¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate output to the Runnable
.
Runnable
objects that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic output schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an output schema for a specific configuration.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
type[BaseModel]
|
A Pydantic model that can be used to validate output. |
get_output_jsonschema
¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the output of the Runnable
.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict[str, Any]
|
A JSON schema that represents the output of the |
Example
Added in version 0.3.0
config_schema
¶
The type of config this Runnable
accepts specified as a Pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives
methods.
PARAMETER | DESCRIPTION |
---|---|
include
|
A list of fields to include in the config schema. |
RETURNS | DESCRIPTION |
---|---|
type[BaseModel]
|
A Pydantic model that can be used to validate config. |
get_config_jsonschema
¶
get_graph
¶
get_graph(config: RunnableConfig | None = None) -> Graph
Return a graph representation of this Runnable
.
get_prompts
¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
Return a list of prompts used by this Runnable
.
__or__
¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
PARAMETER | DESCRIPTION |
---|---|
other
|
Another
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Other]
|
A new |
__ror__
¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
PARAMETER | DESCRIPTION |
---|---|
other
|
Another
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Other, Output]
|
A new |
pipe
¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
Pipe Runnable
objects.
Compose this Runnable
with Runnable
-like objects to make a
RunnableSequence
.
Equivalent to RunnableSequence(self, *others)
or self | others[0] | ...
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
PARAMETER | DESCRIPTION |
---|---|
*others
|
Other
TYPE:
|
name
|
An optional name for the resulting
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Other]
|
A new |
pick
¶
Pick keys from the output dict
of this Runnable
.
Pick a single key:
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick a list of keys:
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
PARAMETER | DESCRIPTION |
---|---|
keys
|
A key or list of keys to pick from the output dict. |
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Any, Any]
|
a new |
assign
¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
Assigns new fields to the dict
output of this Runnable
.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
A mapping of keys to
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Any, Any]
|
A new |
invoke
¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
Transform a single input into an output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Output
|
The output of the |
ainvoke
async
¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
Transform a single input into an output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Output
|
The output of the |
batch
¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Output]
|
A list of outputs from the |
batch_as_completed
¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
Run invoke
in parallel on a list of inputs.
Yields results as they complete.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
tuple[int, Output | Exception]
|
Tuples of the index of the input and the output from the |
abatch
async
¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
Default implementation runs ainvoke
in parallel using asyncio.gather
.
The default implementation of batch
works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Output]
|
A list of outputs from the |
abatch_as_completed
async
¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
Run ainvoke
in parallel on a list of inputs.
Yields results as they complete.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
A tuple of the index of the input and the output from the |
stream
¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[AIMessageChunk]
Default implementation of stream
, which calls invoke
.
Subclasses must override this method if they support streaming output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
Output
|
The output of the |
astream
async
¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[AIMessageChunk]
Default implementation of astream
, which calls ainvoke
.
Subclasses must override this method if they support streaming output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[Output]
|
The output of the |
astream_log
async
¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
Stream all output from a Runnable
, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The Jsonpatch ops can be applied in order to construct state.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
diff
|
Whether to yield diffs between each step or the current state.
TYPE:
|
with_streamed_output_list
|
Whether to yield the
TYPE:
|
include_names
|
Only include logs with these names. |
include_types
|
Only include logs with these types. |
include_tags
|
Only include logs with these tags. |
exclude_names
|
Exclude logs with these names. |
exclude_types
|
Exclude logs with these types. |
exclude_tags
|
Exclude logs with these tags. |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
A |
astream_events
async
¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
Generate a stream of events.
Use to create an iterator over StreamEvent
that provide real-time information
about the progress of the Runnable
, including StreamEvent
from intermediate
results.
A StreamEvent
is a dictionary with the following schema:
event
: Event names are of the format:on_[runnable_type]_(start|stream|end)
.name
: The name of theRunnable
that generated the event.run_id
: Randomly generated ID associated with the given execution of theRunnable
that emitted the event. A childRunnable
that gets invoked as part of the execution of a parentRunnable
is assigned its own unique ID.parent_ids
: The IDs of the parent runnables that generated the event. The rootRunnable
will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags
: The tags of theRunnable
that generated the event.metadata
: The metadata of theRunnable
that generated the event.data
: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
event | name | chunk | input | output |
---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'Hello' |
||
on_llm_end |
'[model name]' |
'Hello human!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute | Type | Description |
---|---|---|
name |
str |
A user defined name for the event. |
data |
Any |
The data associated with the event. This can be anything, though we suggest making it JSON serializable. |
Here are declarations associated with the standard events shown above:
format_docs
:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool
:
prompt
:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
For instance:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
version
|
The version of the schema to use either
TYPE:
|
include_names
|
Only include events from |
include_types
|
Only include events from |
include_tags
|
Only include events from |
exclude_names
|
Exclude events from |
exclude_types
|
Exclude events from |
exclude_tags
|
Exclude events from |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[StreamEvent]
|
An async stream of |
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
If the version is not |
transform
¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
Transform inputs to outputs.
Default implementation of transform, which buffers input and calls astream
.
Subclasses must override this method if they can start producing output while input is still being generated.
PARAMETER | DESCRIPTION |
---|---|
input
|
An iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
Output
|
The output of the |
atransform
async
¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
Transform inputs to outputs.
Default implementation of atransform, which buffers input and calls astream
.
Subclasses must override this method if they can start producing output while input is still being generated.
PARAMETER | DESCRIPTION |
---|---|
input
|
An async iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[Output]
|
The output of the |
bind
¶
Bind arguments to a Runnable
, returning a new Runnable
.
Useful when a Runnable
in a chain requires an argument that is not
in the output of the previous Runnable
or included in the user input.
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
The arguments to bind to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config
¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
Bind config to a Runnable
, returning a new Runnable
.
PARAMETER | DESCRIPTION |
---|---|
config
|
The config to bind to the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
with_listeners
¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
Bind lifecycle listeners to a Runnable
, returning a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
PARAMETER | DESCRIPTION |
---|---|
on_start
|
Called before the
TYPE:
|
on_end
|
Called after the
TYPE:
|
on_error
|
Called if the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners
¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
Bind async lifecycle listeners to a Runnable
.
Returns a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
PARAMETER | DESCRIPTION |
---|---|
on_start
|
Called asynchronously before the
TYPE:
|
on_end
|
Called asynchronously after the
TYPE:
|
on_error
|
Called asynchronously if the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types
¶
with_types(
*, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]
Bind input and output types to a Runnable
, returning a new Runnable
.
PARAMETER | DESCRIPTION |
---|---|
input_type
|
The input type to bind to the
TYPE:
|
output_type
|
The output type to bind to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
with_retry
¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
Create a new Runnable
that retries the original Runnable
on exceptions.
PARAMETER | DESCRIPTION |
---|---|
retry_if_exception_type
|
A tuple of exception types to retry on.
TYPE:
|
wait_exponential_jitter
|
Whether to add jitter to the wait time between retries.
TYPE:
|
stop_after_attempt
|
The maximum number of attempts to make before giving up.
TYPE:
|
exponential_jitter_params
|
Parameters for
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new Runnable that retries the original Runnable on exceptions. |
Example
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map
¶
with_fallbacks
¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
Add fallbacks to a Runnable
, returning a new Runnable
.
The new Runnable
will try the original Runnable
, and then each fallback
in order, upon failures.
PARAMETER | DESCRIPTION |
---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
PARAMETER | DESCRIPTION |
---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
as_tool
¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
Create a BaseTool
from a Runnable
.
as_tool
will instantiate a BaseTool
with a name, description, and
args_schema
from a Runnable
. Where possible, schemas are inferred
from runnable.get_input_schema
. Alternatively (e.g., if the
Runnable
takes a dict as input and the specific dict keys are not typed),
the schema can be specified directly with args_schema
. You can also
pass arg_types
to just specify the required arguments and their types.
PARAMETER | DESCRIPTION |
---|---|
args_schema
|
The schema for the tool. |
name
|
The name of the tool.
TYPE:
|
description
|
The description of the tool.
TYPE:
|
arg_types
|
A dictionary of argument names to types. |
RETURNS | DESCRIPTION |
---|---|
BaseTool
|
A |
Typed dict input:
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via args_schema
:
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via arg_types
:
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
String input:
from langchain_core.runnables import RunnableLambda
def f(x: str) -> str:
return x + "a"
def g(x: str) -> str:
return x + "z"
runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")
Added in version 0.2.14
is_lc_serializable
classmethod
¶
is_lc_serializable() -> bool
Is this class serializable?
By design, even if a class inherits from Serializable
, it is not serializable
by default. This is to prevent accidental serialization of objects that should
not be serialized.
RETURNS | DESCRIPTION |
---|---|
bool
|
Whether the class is serializable. Default is |
get_lc_namespace
classmethod
¶
lc_id
classmethod
¶
Return a unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
For example, for the class langchain.llms.openai.OpenAI
, the id is
["langchain", "llms", "openai", "OpenAI"]
.
to_json
¶
Serialize the Runnable
to JSON.
RETURNS | DESCRIPTION |
---|---|
SerializedConstructor | SerializedNotImplemented
|
A JSON-serializable representation of the |
to_json_not_implemented
¶
Serialize a "not implemented" object.
RETURNS | DESCRIPTION |
---|---|
SerializedNotImplemented
|
|
configurable_fields
¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
Configure particular Runnable
fields at runtime.
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
A dictionary of
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If a configuration key is not found in the |
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives
¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
Configure alternatives for Runnable
objects that can be set at runtime.
PARAMETER | DESCRIPTION |
---|---|
which
|
The
TYPE:
|
default_key
|
The default key to use if no alternative is selected.
TYPE:
|
prefix_keys
|
Whether to prefix the keys with the
TYPE:
|
**kwargs
|
A dictionary of keys to
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose
¶
generate_prompt
¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER | DESCRIPTION |
---|---|
prompts
|
List of
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
LLMResult
|
An |
agenerate_prompt
async
¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER | DESCRIPTION |
---|---|
prompts
|
List of
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
LLMResult
|
An |
get_num_tokens
¶
generate
¶
generate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER | DESCRIPTION |
---|---|
messages
|
List of list of messages.
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
TYPE:
|
tags
|
The tags to apply. |
metadata
|
The metadata to apply. |
run_name
|
The name of the run.
TYPE:
|
run_id
|
The ID of the run.
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
LLMResult
|
An |
agenerate
async
¶
agenerate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER | DESCRIPTION |
---|---|
messages
|
List of list of messages.
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
TYPE:
|
tags
|
The tags to apply. |
metadata
|
The metadata to apply. |
run_name
|
The name of the run.
TYPE:
|
run_id
|
The ID of the run.
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
LLMResult
|
An |