Skip to content

langchain-ollama

This is the langchain_ollama package.

Provides infrastructure for interacting with the Ollama <https://ollama.com/>__ service.

Note

Newly added in 0.3.4: validate_model_on_init param on all models. This parameter allows you to validate the model exists in Ollama locally on initialization. If set to True, it will raise an error if the model does not exist locally. This is useful for ensuring that the model is available before attempting to use it, especially in environments where models may not be pre-downloaded.

Modules:

Name Description
chat_models

Ollama chat models.

embeddings

Ollama embeddings models.

llms

Ollama large language models.

Classes:

Name Description
ChatOllama

Ollama chat model integration.

OllamaEmbeddings

Ollama embedding model integration.

OllamaLLM

Ollama large language models.

ChatOllama

Bases: BaseChatModel

Ollama chat model integration.

Setup

:open:

Install langchain-ollama and download any models you want to use from ollama.

.. code-block:: bash

ollama pull gpt-oss:20b
pip install -U langchain-ollama

Key init args — completion params: model: str Name of Ollama model to use. reasoning: Optional[bool] Controls the reasoning/thinking mode for supported models <https://ollama.com/search?c=thinking>__.

    - ``True``: Enables reasoning mode. The model's reasoning process will be
      captured and returned separately in the ``additional_kwargs`` of the
      response message, under ``reasoning_content``. The main response
      content will not include the reasoning tags.
    - ``False``: Disables reasoning mode. The model will not perform any reasoning,
      and the response will not include any reasoning content.
    - ``None`` (Default): The model will use its default reasoning behavior. Note
      however, if the model's default behavior *is* to perform reasoning, think tags
      (``<think>`` and ``</think>``) will be present within the main response content
      unless you set ``reasoning`` to ``True``.
temperature: float
    Sampling temperature. Ranges from ``0.0`` to ``1.0``.
num_predict: Optional[int]
    Max number of tokens to generate.

See full list of supported init args and their descriptions in the params section.

Instantiate

.. code-block:: python

from langchain_ollama import ChatOllama

llm = ChatOllama(
    model="gpt-oss:20b",
    validate_model_on_init=True,
    temperature=0.8,
    num_predict=256,
    # other params ...
)
Invoke

.. code-block:: python

messages = [
    ("system", "You are a helpful translator. Translate the user sentence to French."),
    ("human", "I love programming."),
]
llm.invoke(messages)

.. code-block:: python

AIMessage(content='J'adore le programmation. (Note: "programming" can also refer to the act of writing code, so if you meant that, I could translate it as "J'adore programmer". But since you didn\'t specify, I assumed you were talking about the activity itself, which is what "le programmation" usually refers to.)', response_metadata={'model': 'llama3', 'created_at': '2024-07-04T03:37:50.182604Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 3576619666, 'load_duration': 788524916, 'prompt_eval_count': 32, 'prompt_eval_duration': 128125000, 'eval_count': 71, 'eval_duration': 2656556000}, id='run-ba48f958-6402-41a5-b461-5e250a4ebd36-0')
Stream

.. code-block:: python

for chunk in llm.stream("Return the words Hello World!"):
    print(chunk.text, end="")

.. code-block:: python

content='Hello' id='run-327ff5ad-45c8-49fe-965c-0a93982e9be1'
content=' World' id='run-327ff5ad-45c8-49fe-965c-0a93982e9be1'
content='!' id='run-327ff5ad-45c8-49fe-965c-0a93982e9be1'
content='' response_metadata={'model': 'llama3', 'created_at': '2024-07-04T03:39:42.274449Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 411875125, 'load_duration': 1898166, 'prompt_eval_count': 14, 'prompt_eval_duration': 297320000, 'eval_count': 4, 'eval_duration': 111099000} id='run-327ff5ad-45c8-49fe-965c-0a93982e9be1'

.. code-block:: python

stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
    full += chunk
full

.. code-block:: python

AIMessageChunk(
    content='Je adore le programmation.(Note: "programmation" is the formal way to say "programming" in French, but informally, people might use the phrase "le développement logiciel" or simply "le code")',
    response_metadata={
        "model": "llama3",
        "created_at": "2024-07-04T03:38:54.933154Z",
        "message": {"role": "assistant", "content": ""},
        "done_reason": "stop",
        "done": True,
        "total_duration": 1977300042,
        "load_duration": 1345709,
        "prompt_eval_duration": 159343000,
        "eval_count": 47,
        "eval_duration": 1815123000,
    },
    id="run-3c81a3ed-3e79-4dd3-a796-04064d804890",
)
Async

.. code-block:: python

await llm.ainvoke("Hello how are you!")

.. code-block:: python

AIMessage(
    content="Hi there! I'm just an AI, so I don't have feelings or emotions like humans do. But I'm functioning properly and ready to help with any questions or tasks you may have! How can I assist you today?",
    response_metadata={
        "model": "llama3",
        "created_at": "2024-07-04T03:52:08.165478Z",
        "message": {"role": "assistant", "content": ""},
        "done_reason": "stop",
        "done": True,
        "total_duration": 2138492875,
        "load_duration": 1364000,
        "prompt_eval_count": 10,
        "prompt_eval_duration": 297081000,
        "eval_count": 47,
        "eval_duration": 1838524000,
    },
    id="run-29c510ae-49a4-4cdd-8f23-b972bfab1c49-0",
)

.. code-block:: python

async for chunk in llm.astream("Say hello world!"):
    print(chunk.content)

.. code-block:: python

HEL
LO
WORLD
!

.. code-block:: python

messages = [("human", "Say hello world!"), ("human", "Say goodbye world!")]
await llm.abatch(messages)

.. code-block:: python

[
    AIMessage(
        content="HELLO, WORLD!",
        response_metadata={
            "model": "llama3",
            "created_at": "2024-07-04T03:55:07.315396Z",
            "message": {"role": "assistant", "content": ""},
            "done_reason": "stop",
            "done": True,
            "total_duration": 1696745458,
            "load_duration": 1505000,
            "prompt_eval_count": 8,
            "prompt_eval_duration": 111627000,
            "eval_count": 6,
            "eval_duration": 185181000,
        },
        id="run-da6c7562-e25a-4a44-987a-2c83cd8c2686-0",
    ),
    AIMessage(
        content="It's been a blast chatting with you! Say goodbye to the world for me, and don't forget to come back and visit us again soon!",
        response_metadata={
            "model": "llama3",
            "created_at": "2024-07-04T03:55:07.018076Z",
            "message": {"role": "assistant", "content": ""},
            "done_reason": "stop",
            "done": True,
            "total_duration": 1399391083,
            "load_duration": 1187417,
            "prompt_eval_count": 20,
            "prompt_eval_duration": 230349000,
            "eval_count": 31,
            "eval_duration": 1166047000,
        },
        id="run-96cad530-6f3e-4cf9-86b4-e0f8abba4cdb-0",
    ),
]
JSON mode

.. code-block:: python

json_llm = ChatOllama(format="json")
llm.invoke(
    "Return a query for the weather in a random location and time of day with two keys: location and time_of_day. "
    "Respond using JSON only."
).content

.. code-block:: python

'{"location": "Pune, India", "time_of_day": "morning"}'
Tool Calling

.. code-block:: python

from langchain_ollama import ChatOllama
from pydantic import BaseModel, Field


class Multiply(BaseModel):
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


ans = await chat.invoke("What is 45*67")
ans.tool_calls

.. code-block:: python

[
    {
        "name": "Multiply",
        "args": {"a": 45, "b": 67},
        "id": "420c3f3b-df10-4188-945f-eb3abdb40622",
        "type": "tool_call",
    }
]

Thinking / Reasoning: You can enable reasoning mode for models that support it by setting the reasoning parameter to True in either the constructor or the invoke/stream methods. This will enable the model to think through the problem and return the reasoning process separately in the additional_kwargs of the response message, under reasoning_content.

If ``reasoning`` is set to ``None``, the model will use its default reasoning
behavior, and any reasoning content will *not* be captured under the
``reasoning_content`` key, but will be present within the main response content
as think tags (``<think>`` and ``</think>``).

!!! note
    This feature is only available for `models that support reasoning <https://ollama.com/search?c=thinking>`__.

.. code-block:: python

    from langchain_ollama import ChatOllama

    llm = ChatOllama(
        model="deepseek-r1:8b",
        validate_model_on_init=True,
        reasoning=True,
    )

    llm.invoke("how many r in the word strawberry?")

    # or, on an invocation basis:

    llm.invoke("how many r in the word strawberry?", reasoning=True)
    # or llm.stream("how many r in the word strawberry?", reasoning=True)

    # If not provided, the invocation will default to the ChatOllama reasoning
    # param provided (None by default).

.. code-block:: python

    AIMessage(content='The word "strawberry" contains **three \'r\' letters**. Here\'s a breakdown for clarity:\n\n- The spelling of "strawberry" has two parts ... be 3.\n\nTo be thorough, let\'s confirm with an online source or common knowledge.\n\nI can recall that "strawberry" has: s-t-r-a-w-b-e-r-r-y — yes, three r\'s.\n\nPerhaps it\'s misspelled by some, but standard is correct.\n\nSo I think the response should be 3.\n'}, response_metadata={'model': 'deepseek-r1:8b', 'created_at': '2025-07-08T19:33:55.891269Z', 'done': True, 'done_reason': 'stop', 'total_duration': 98232561292, 'load_duration': 28036792, 'prompt_eval_count': 10, 'prompt_eval_duration': 40171834, 'eval_count': 3615, 'eval_duration': 98163832416, 'model_name': 'deepseek-r1:8b'}, id='run--18f8269f-6a35-4a7c-826d-b89d52c753b3-0', usage_metadata={'input_tokens': 10, 'output_tokens': 3615, 'total_tokens': 3625})

Methods:

Name Description
get_name

Get the name of the Runnable.

get_input_schema

Get a pydantic model that can be used to validate input to the Runnable.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe runnables.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

__init__
is_lc_serializable

Is this class serializable?

get_lc_namespace

Get the namespace of the langchain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnables that can be set at runtime.

set_verbose

If verbose is None, set it.

get_token_ids

Return the ordered ids of the tokens in a text.

get_num_tokens

Get the number of tokens present in the text.

get_num_tokens_from_messages

Get the number of tokens in the messages.

generate

Pass a sequence of prompts to the model and return model generations.

agenerate

Asynchronously pass a sequence of prompts to a model and return generations.

dict

Return a dictionary of the LLM.

bind_tools

Bind tool-like objects to this chat model.

with_structured_output

Model wrapper that returns outputs formatted to match the given schema.

Attributes:

Name Type Description
InputType TypeAlias

Get the input type for this runnable.

OutputType Any

Get the output type for this runnable.

input_schema type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema type[BaseModel]

Output schema.

config_specs list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_secrets dict[str, str]

A map of constructor argument names to secret ids.

lc_attributes dict

List of attribute names that should be included in the serialized kwargs.

cache BaseCache | bool | None

Whether to cache the response.

verbose bool

Whether to print out response text.

callbacks Callbacks

Callbacks to add to the run trace.

tags list[str] | None

Tags to add to the run trace.

metadata dict[str, Any] | None

Metadata to add to the run trace.

custom_get_token_ids Callable[[str], list[int]] | None

Optional encoder to use for counting tokens.

rate_limiter BaseRateLimiter | None

An optional rate limiter to use for limiting the number of requests.

disable_streaming bool | Literal['tool_calling']

Whether to disable streaming for this model.

output_version str | None

Version of AIMessage output format to store in message content.

model str

Model name to use.

reasoning Optional[Union[bool, str]]

Controls the reasoning/thinking mode for supported models <https://ollama.com/search?c=thinking>__.

validate_model_on_init bool

Whether to validate the model exists in Ollama locally on initialization.

mirostat Optional[int]

Enable Mirostat sampling for controlling perplexity.

mirostat_eta Optional[float]

Influences how quickly the algorithm responds to feedback from generated text.

mirostat_tau Optional[float]

Controls the balance between coherence and diversity of the output.

num_ctx Optional[int]

Sets the size of the context window used to generate the next token.

num_gpu Optional[int]

The number of GPUs to use.

num_thread Optional[int]

Sets the number of threads to use during computation.

num_predict Optional[int]

Maximum number of tokens to predict when generating text.

repeat_last_n Optional[int]

Sets how far back for the model to look back to prevent repetition.

repeat_penalty Optional[float]

Sets how strongly to penalize repetitions.

temperature Optional[float]

The temperature of the model.

seed Optional[int]

Sets the random number seed to use for generation.

stop Optional[list[str]]

Sets the stop tokens to use.

tfs_z Optional[float]

Tail free sampling.

top_k Optional[int]

Reduces the probability of generating nonsense.

top_p Optional[float]

Works together with top-k.

format Optional[Union[Literal['', 'json'], JsonSchemaValue]]

Specify the format of the output (options: 'json', JSON schema).

keep_alive Optional[Union[int, str]]

How long the model will stay loaded into memory.

base_url Optional[str]

Base url the model is hosted under.

client_kwargs Optional[dict]

Additional kwargs to pass to the httpx clients. Pass headers in here.

async_client_kwargs Optional[dict]

Additional kwargs to merge with client_kwargs before passing to httpx client.

sync_client_kwargs Optional[dict]

Additional kwargs to merge with client_kwargs before passing to httpx client.

InputType property

InputType: TypeAlias

Get the input type for this runnable.

OutputType property

OutputType: Any

Get the output type for this runnable.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_secrets property

lc_secrets: dict[str, str]

A map of constructor argument names to secret ids.

For example,

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor. Default is an empty dictionary.

cache class-attribute instance-attribute

cache: BaseCache | bool | None = Field(
    default=None, exclude=True
)

Whether to cache the response.

  • If true, will use the global cache.
  • If false, will not use a cache
  • If None, will use the global cache if it's set, otherwise no cache.
  • If instance of BaseCache, will use the provided cache.

Caching is not currently supported for streaming methods of models.

verbose class-attribute instance-attribute

verbose: bool = Field(
    default_factory=_get_verbosity, exclude=True, repr=False
)

Whether to print out response text.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to add to the run trace.

tags class-attribute instance-attribute

tags: list[str] | None = Field(default=None, exclude=True)

Tags to add to the run trace.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = Field(
    default=None, exclude=True
)

Metadata to add to the run trace.

custom_get_token_ids class-attribute instance-attribute

custom_get_token_ids: Callable[[str], list[int]] | None = (
    Field(default=None, exclude=True)
)

Optional encoder to use for counting tokens.

rate_limiter class-attribute instance-attribute

rate_limiter: BaseRateLimiter | None = Field(
    default=None, exclude=True
)

An optional rate limiter to use for limiting the number of requests.

disable_streaming class-attribute instance-attribute

disable_streaming: bool | Literal['tool_calling'] = False

Whether to disable streaming for this model.

If streaming is bypassed, then stream()/astream()/astream_events() will defer to invoke()/ainvoke().

  • If True, will always bypass streaming case.
  • If 'tool_calling', will bypass streaming case only when the model is called with a tools keyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke()) only when the tools argument is provided. This offers the best of both worlds.
  • If False (default), will always use streaming case if available.

The main reason for this flag is that code might be written using stream() and a user may want to swap out a given model for another model whose the implementation does not properly support streaming.

output_version class-attribute instance-attribute

output_version: str | None = Field(
    default_factory=from_env(
        "LC_OUTPUT_VERSION", default=None
    )
)

Version of AIMessage output format to store in message content.

AIMessage.content_blocks will lazily parse the contents of content into a standard format. This flag can be used to additionally store the standard format in message content, e.g., for serialization purposes.

Supported values:

  • "v0": provider-specific format in content (can lazily-parse with .content_blocks)
  • "v1": standardized format in content (consistent with .content_blocks)

Partner packages (e.g., langchain-openai) can also use this field to roll out new content formats in a backward-compatible way.

Added in version 1.0

model instance-attribute

model: str

Model name to use.

reasoning class-attribute instance-attribute

reasoning: Optional[Union[bool, str]] = None

Controls the reasoning/thinking mode for supported models <https://ollama.com/search?c=thinking>__.

  • True: Enables reasoning mode. The model's reasoning process will be captured and returned separately in the additional_kwargs of the response message, under reasoning_content. The main response content will not include the reasoning tags.
  • False: Disables reasoning mode. The model will not perform any reasoning, and the response will not include any reasoning content.
  • None (Default): The model will use its default reasoning behavior. Note however, if the model's default behavior is to perform reasoning, think tags ()<think> and </think>) will be present within the main response content unless you set reasoning to True.
  • str: e.g. 'low', 'medium', 'high'. Enables reasoning with a custom intensity level. Currently, this is only supported gpt-oss. See the Ollama docs <https://github.com/ollama/ollama-python/blob/da79e987f0ac0a4986bf396f043b36ef840370bc/ollama/_types.py#L210>__ for more information.

validate_model_on_init class-attribute instance-attribute

validate_model_on_init: bool = False

Whether to validate the model exists in Ollama locally on initialization.

Added in version 0.3.4

mirostat class-attribute instance-attribute

mirostat: Optional[int] = None

Enable Mirostat sampling for controlling perplexity.

(Default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)

mirostat_eta class-attribute instance-attribute

mirostat_eta: Optional[float] = None

Influences how quickly the algorithm responds to feedback from generated text.

A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive.

(Default: 0.1)

mirostat_tau class-attribute instance-attribute

mirostat_tau: Optional[float] = None

Controls the balance between coherence and diversity of the output.

A lower value will result in more focused and coherent text.

(Default: 5.0)

num_ctx class-attribute instance-attribute

num_ctx: Optional[int] = None

Sets the size of the context window used to generate the next token.

(Default: 2048)

num_gpu class-attribute instance-attribute

num_gpu: Optional[int] = None

The number of GPUs to use.

On macOS it defaults to 1 to enable metal support, 0 to disable.

num_thread class-attribute instance-attribute

num_thread: Optional[int] = None

Sets the number of threads to use during computation.

By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores).

num_predict class-attribute instance-attribute

num_predict: Optional[int] = None

Maximum number of tokens to predict when generating text.

(Default: 128, -1 = infinite generation, -2 = fill context)

repeat_last_n class-attribute instance-attribute

repeat_last_n: Optional[int] = None

Sets how far back for the model to look back to prevent repetition.

(Default: 64, 0 = disabled, -1 = num_ctx)

repeat_penalty class-attribute instance-attribute

repeat_penalty: Optional[float] = None

Sets how strongly to penalize repetitions.

A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)

temperature class-attribute instance-attribute

temperature: Optional[float] = None

The temperature of the model.

Increasing the temperature will make the model answer more creatively.

(Default: 0.8)

seed class-attribute instance-attribute

seed: Optional[int] = None

Sets the random number seed to use for generation.

Setting this to a specific number will make the model generate the same text for the same prompt.

stop class-attribute instance-attribute

stop: Optional[list[str]] = None

Sets the stop tokens to use.

tfs_z class-attribute instance-attribute

tfs_z: Optional[float] = None

Tail free sampling.

Used to reduce the impact of less probable tokens from the output.

A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.

(Default: 1)

top_k class-attribute instance-attribute

top_k: Optional[int] = None

Reduces the probability of generating nonsense.

A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative.

(Default: 40)

top_p class-attribute instance-attribute

top_p: Optional[float] = None

Works together with top-k.

A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text.

(Default: 0.9)

format class-attribute instance-attribute

format: Optional[
    Union[Literal["", "json"], JsonSchemaValue]
] = None

Specify the format of the output (options: 'json', JSON schema).

keep_alive class-attribute instance-attribute

keep_alive: Optional[Union[int, str]] = None

How long the model will stay loaded into memory.

base_url class-attribute instance-attribute

base_url: Optional[str] = None

Base url the model is hosted under.

If none, defaults to the Ollama client default.

Supports userinfo auth in the format http://username:password@localhost:11434. Useful if your Ollama server is behind a proxy.

Warning

userinfo is not secure and should only be used for local testing or in secure environments. Avoid using it in production or over unsecured networks.

Note

If using userinfo, ensure that the Ollama server is configured to accept and validate these credentials.

Note

userinfo headers are passed to both sync and async clients.

client_kwargs class-attribute instance-attribute

client_kwargs: Optional[dict] = {}

Additional kwargs to pass to the httpx clients. Pass headers in here.

These arguments are passed to both synchronous and async clients.

Use sync_client_kwargs and async_client_kwargs to pass different arguments to synchronous and asynchronous clients.

async_client_kwargs class-attribute instance-attribute

async_client_kwargs: Optional[dict] = {}

Additional kwargs to merge with client_kwargs before passing to httpx client.

These are clients unique to the async client; for shared args use client_kwargs.

For a full list of the params, see the httpx documentation <https://www.python-httpx.org/api/#asyncclient>__.

sync_client_kwargs class-attribute instance-attribute

sync_client_kwargs: Optional[dict] = {}

Additional kwargs to merge with client_kwargs before passing to httpx client.

These are clients unique to the sync client; for shared args use client_kwargs.

For a full list of the params, see the httpx documentation <https://www.python-httpx.org/api/#client>__.

get_name

get_name(
    suffix: str | None = None, *, name: str | None = None
) -> str

Get the name of the Runnable.

Parameters:

Name Type Description Default
suffix str | None

An optional suffix to append to the name.

None
name str | None

An optional name to use instead of the Runnable's name.

None

Returns:

Type Description
str

The name of the Runnable.

get_input_schema

get_input_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate input to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the Runnable is invoked with.

This method allows to get an input schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate input.

get_input_jsonschema

get_input_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate output to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(
    *, include: Sequence[str] | None = None
) -> type[BaseModel]

The type of config this Runnable accepts specified as a pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(
    *, include: Sequence[str] | None = None
) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(
    config: RunnableConfig | None = None,
) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: (
        Runnable[Any, Other]
        | Callable[[Iterator[Any]], Iterator[Other]]
        | Callable[
            [AsyncIterator[Any]], AsyncIterator[Other]
        ]
        | Callable[[Any], Other]
        | Mapping[
            str,
            Runnable[Any, Other]
            | Callable[[Any], Other]
            | Any,
        ]
    ),
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: (
        Runnable[Other, Any]
        | Callable[[Iterator[Other]], Iterator[Any]]
        | Callable[
            [AsyncIterator[Other]], AsyncIterator[Any]
        ]
        | Callable[[Other], Any]
        | Mapping[
            str,
            Runnable[Other, Any]
            | Callable[[Other], Any]
            | Any,
        ]
    ),
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other],
    name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe runnables.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]

Parameters:

Name Type Description Default
*others Runnable[Any, Other] | Callable[[Any], Other]

Other Runnable or Runnable-like objects to compose

()
name str | None

An optional name for the resulting RunnableSequence.

None

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(
    keys: str | list[str],
) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick single key:

```python
import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
```

Pick list of keys:

```python
from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(
    str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
```

Parameters:

Name Type Description Default
keys str | list[str]

A key or list of keys to pick from the output dict.

required

Returns:

Type Description
RunnableSerializable[Any, Any]

a new Runnable.

assign

assign(
    **kwargs: (
        Runnable[dict[str, Any], Any]
        | Callable[[dict[str, Any]], Any]
        | Mapping[
            str,
            Runnable[dict[str, Any], Any]
            | Callable[[dict[str, Any]], Any],
        ]
    ),
) -> RunnableSerializable[Any, Any]

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | llm | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | llm)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}

Parameters:

Name Type Description Default
**kwargs Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]]

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

{}

Returns:

Type Description
RunnableSerializable[Any, Any]

A new Runnable.

batch

batch(
    inputs: list[Input],
    config: (
        RunnableConfig | list[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> list[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters:

Name Type Description Default
inputs list[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | list[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[Input],
    config: (
        RunnableConfig | list[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> list[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters:

Name Type Description Default
inputs list[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | list[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
diff bool

Whether to yield diffs between each step or the current state.

True
with_streamed_output_list bool

Whether to yield the streamed_output list.

True
include_names Sequence[str] | None

Only include logs with these names.

None
include_types Sequence[str] | None

Only include logs with these types.

None
include_tags Sequence[str] | None

Only include logs with these tags.

None
exclude_names Sequence[str] | None

Exclude logs with these names.

None
exclude_types Sequence[str] | None

Exclude logs with these types.

None
exclude_tags Sequence[str] | None

Exclude logs with these tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: str - Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: str - The name of the Runnable that generated the event.
  • run_id: str - randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: list[str] - The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: Optional[list[str]] - The tags of the Runnable that generated the event.
  • metadata: Optional[dict[str, Any]] - The metadata of the Runnable that generated the event.
  • data: dict[str, Any]

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | event | name | chunk | input | output | +==========================+==================+=====================================+===================================================+=====================================================+ | on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_start | [model name] | | {'input': 'hello'} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_stream | [model name] | 'Hello' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_end | [model name] | | 'Hello human!' | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_start | format_docs | | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_stream | format_docs | 'hello world!, goodbye world!' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_end | format_docs | | [Document(...)] | 'hello world!, goodbye world!' | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_start | some_tool | | {"x": 1, "y": "2"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_end | some_tool | | | {"x": 1, "y": "2"} | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_start | [retriever name] | | {"query": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_start | [template_name] | | {"question": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

+-----------+------+-----------------------------------------------------------------------------------------------------------+ | Attribute | Type | Description | +===========+======+===========================================================================================================+ | name | str | A user defined name for the event. | +-----------+------+-----------------------------------------------------------------------------------------------------------+ | data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. | +-----------+------+-----------------------------------------------------------------------------------------------------------+

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
version Literal['v1', 'v2']

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

'v2'
include_names Sequence[str] | None

Only include events from Runnables with matching names.

None
include_types Sequence[str] | None

Only include events from Runnables with matching types.

None
include_tags Sequence[str] | None

Only include events from Runnables with matching tags.

None
exclude_names Sequence[str] | None

Exclude events from Runnables with matching names.

None
exclude_types Sequence[str] | None

Exclude events from Runnables with matching types.

None
exclude_tags Sequence[str] | None

Exclude events from Runnables with matching tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

{}

Yields:

Type Description
AsyncIterator[StreamEvent]

An async stream of StreamEvents.

Raises:

Type Description
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input Iterator[Input]

An iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input AsyncIterator[Input]

An async iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

Parameters:

Name Type Description Default
kwargs Any

The arguments to bind to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

llm = ChatOllama(model="llama3.1")

# Without bind.
chain = llm | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind.
chain = llm.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

The config to bind to the Runnable.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_end: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_error: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called before the Runnable starts running, with the Run object. Defaults to None.

None
on_end Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start AsyncListener | None

Called asynchronously before the Runnable starts running, with the Run object. Defaults to None.

None
on_end AsyncListener | None

Called asynchronously after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error AsyncListener | None

Called asynchronously if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *,
    input_type: type[Input] | None = None,
    output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
input_type type[Input] | None

The input type to bind to the Runnable. Defaults to None.

None
output_type type[Output] | None

The output type to bind to the Runnable. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[
        type[BaseException], ...
    ] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: (
        ExponentialJitterParams | None
    ) = None,
    stop_after_attempt: int = 3
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

Parameters:

Name Type Description Default
retry_if_exception_type tuple[type[BaseException], ...]

A tuple of exception types to retry on. Defaults to (Exception,).

(Exception,)
wait_exponential_jitter bool

Whether to add jitter to the wait time between retries. Defaults to True.

True
stop_after_attempt int

The maximum number of attempts to make before giving up. Defaults to 3.

3
exponential_jitter_params ExponentialJitterParams | None

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

Returns:

Type Description
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[
        type[BaseException], ...
    ] = (Exception,),
    exception_key: str | None = None
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle. Defaults to (Exception,).

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input. Defaults to None.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle.

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

Parameters:

Name Type Description Default
args_schema type[BaseModel] | None

The schema for the tool. Defaults to None.

None
name str | None

The name of the tool. Defaults to None.

None
description str | None

The description of the tool. Defaults to None.

None
arg_types dict[str, type] | None

A dictionary of argument names to types. Defaults to None.

None

Returns:

Type Description
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

__init__

__init__(*args: Any, **kwargs: Any) -> None

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

Returns:

Type Description
bool

Whether the class is serializable. Default is False.

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the langchain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

Returns:

Type Description
list[str]

The namespace as a list of strings.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object. For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> (
    SerializedConstructor | SerializedNotImplemented
)

Serialize the Runnable to JSON.

Returns:

Type Description
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

Returns:

Type Description
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

Parameters:

Name Type Description Default
**kwargs AnyConfigurableField

A dictionary of ConfigurableField instances to configure.

{}

Raises:

Type Description
ValueError

If a configuration key is not found in the Runnable.

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: (
        Runnable[Input, Output]
        | Callable[[], Runnable[Input, Output]]
    )
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnables that can be set at runtime.

Parameters:

Name Type Description Default
which ConfigurableField

The ConfigurableField instance that will be used to select the alternative.

required
default_key str

The default key to use if no alternative is selected. Defaults to 'default'.

'default'
prefix_keys bool

Whether to prefix the keys with the ConfigurableField id. Defaults to False.

False
**kwargs Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]

A dictionary of keys to Runnable instances or callables that return Runnable instances.

{}

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

set_verbose

set_verbose(verbose: bool | None) -> bool

If verbose is None, set it.

This allows users to pass in None as verbose to access the global setting.

Parameters:

Name Type Description Default
verbose bool | None

The verbosity setting to use.

required

Returns:

Type Description
bool

The verbosity setting to use.

get_token_ids

get_token_ids(text: str) -> list[int]

Return the ordered ids of the tokens in a text.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
list[int]

A list of ids corresponding to the tokens in the text, in order they occur

list[int]

in the text.

get_num_tokens

get_num_tokens(text: str) -> int

Get the number of tokens present in the text.

Useful for checking if an input fits in a model's context window.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
int

The integer number of tokens in the text.

get_num_tokens_from_messages

get_num_tokens_from_messages(
    messages: list[BaseMessage],
    tools: Sequence | None = None,
) -> int

Get the number of tokens in the messages.

Useful for checking if an input fits in a model's context window.

Note

The base implementation of get_num_tokens_from_messages ignores tool schemas.

Parameters:

Name Type Description Default
messages list[BaseMessage]

The message inputs to tokenize.

required
tools Sequence | None

If provided, sequence of dict, BaseModel, function, or BaseTools to be converted to tool schemas.

None

Returns:

Type Description
int

The sum of the number of tokens across the messages.

generate

generate(
    messages: list[list[BaseMessage]],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    **kwargs: Any
) -> LLMResult

Pass a sequence of prompts to the model and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
messages list[list[BaseMessage]]

List of list of messages.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | None

The tags to apply.

None
metadata dict[str, Any] | None

The metadata to apply.

None
run_name str | None

The name of the run.

None
run_id UUID | None

The ID of the run.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input

LLMResult

prompt and additional model provider-specific output.

agenerate async

agenerate(
    messages: list[list[BaseMessage]],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    **kwargs: Any
) -> LLMResult

Asynchronously pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
messages list[list[BaseMessage]]

List of list of messages.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | None

The tags to apply.

None
metadata dict[str, Any] | None

The metadata to apply.

None
run_name str | None

The name of the run.

None
run_id UUID | None

The ID of the run.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input

LLMResult

prompt and additional model provider-specific output.

dict

dict(**kwargs: Any) -> dict

Return a dictionary of the LLM.

bind_tools

bind_tools(
    tools: Sequence[
        Union[dict[str, Any], type, Callable, BaseTool]
    ],
    *,
    tool_choice: Optional[
        Union[dict, str, Literal["auto", "any"], bool]
    ] = None,
    **kwargs: Any
) -> Runnable[LanguageModelInput, AIMessage]

Bind tool-like objects to this chat model.

Assumes model is compatible with OpenAI tool-calling API.

Parameters:

Name Type Description Default
tools Sequence[Union[dict[str, Any], type, Callable, BaseTool]]

A list of tool definitions to bind to this chat model. Supports any tool definition handled by langchain_core.utils.function_calling.convert_to_openai_tool.

required
tool_choice Optional[Union[dict, str, Literal['auto', 'any'], bool]]

If provided, which tool for model to call. This parameter is currently ignored as it is not supported by Ollama.

None
kwargs Any

Any additional parameters are passed directly to self.bind(**kwargs).

{}

with_structured_output

with_structured_output(
    schema: Union[dict, type],
    *,
    method: Literal[
        "function_calling", "json_mode", "json_schema"
    ] = "json_schema",
    include_raw: bool = False,
    **kwargs: Any
) -> Runnable[LanguageModelInput, Union[dict, BaseModel]]

Model wrapper that returns outputs formatted to match the given schema.

Parameters:

Name Type Description Default
schema Union[dict, type]

The output schema. Can be passed in as:

  • a Pydantic class,
  • a JSON schema
  • a TypedDict class
  • an OpenAI function/tool schema.

If schema is a Pydantic class then the model output will be a Pydantic instance of that class, and the model-generated fields will be validated by the Pydantic class. Otherwise the model output will be a dict and will not be validated. See langchain_core.utils.function_calling.convert_to_openai_tool for more on how to properly specify types and descriptions of schema fields when specifying a Pydantic or TypedDict class.

required
method Literal['function_calling', 'json_mode', 'json_schema']

The method for steering model generation, one of:

  • 'json_schema': Uses Ollama's structured output API <https://ollama.com/blog/structured-outputs>__
  • 'function_calling': Uses Ollama's tool-calling API
  • 'json_mode': Specifies format='json'. Note that if using JSON mode then you must include instructions for formatting the output into the desired schema into the model call.
'json_schema'
include_raw bool

If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys 'raw', 'parsed', and 'parsing_error'.

False
kwargs Any

Additional keyword args aren't supported.

{}

Returns:

Type Description
Runnable[LanguageModelInput, Union[dict, BaseModel]]

A Runnable that takes same inputs as a langchain_core.language_models.chat.BaseChatModel.

Runnable[LanguageModelInput, Union[dict, BaseModel]]

If include_raw is False and schema is a Pydantic class, Runnable outputs an instance of schema (i.e., a Pydantic object). Otherwise, if include_raw is False then Runnable outputs a dict.

Runnable[LanguageModelInput, Union[dict, BaseModel]]

If include_raw is True, then Runnable outputs a dict with keys:

Runnable[LanguageModelInput, Union[dict, BaseModel]]
  • 'raw': BaseMessage
Runnable[LanguageModelInput, Union[dict, BaseModel]]
  • 'parsed': None if there was a parsing error, otherwise the type depends on the schema as described above.
Runnable[LanguageModelInput, Union[dict, BaseModel]]
  • 'parsing_error': Optional[BaseException]

Behavior changed in 0.2.2

Added support for structured output API via format parameter.

Behavior changed in 0.3.0

Updated default method to 'json_schema'.

Example: schema=Pydantic class, method='json_schema', include_raw=False

.. code-block:: python

from typing import Optional

from langchain_ollama import ChatOllama
from pydantic import BaseModel, Field

class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    justification: Optional[str] = Field(
        default=...,
        description="A justification for the answer.",
    )

llm = ChatOllama(model="llama3.1", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")

# -> AnswerWithJustification(
#     answer='They weigh the same',
#     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
Example: schema=Pydantic class, method='json_schema', include_raw=True

.. code-block:: python

from langchain_ollama import ChatOllama
from pydantic import BaseModel

class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    justification: str

llm = ChatOllama(model="llama3.1", temperature=0)
structured_llm = llm.with_structured_output(
    AnswerWithJustification,
    include_raw=True,
)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
#     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
#     'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
#     'parsing_error': None
# }
Example: schema=Pydantic class, method='function_calling', include_raw=False

.. code-block:: python

from typing import Optional

from langchain_ollama import ChatOllama
from pydantic import BaseModel, Field

class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    justification: Optional[str] = Field(
        default=...,
        description="A justification for the answer.",
    )

llm = ChatOllama(model="llama3.1", temperature=0)
structured_llm = llm.with_structured_output(
    AnswerWithJustification,
    method="function_calling",
)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")

# -> AnswerWithJustification(
#     answer='They weigh the same',
#     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
Example: schema=TypedDict class, method='function_calling', include_raw=False

.. code-block:: python

# IMPORTANT: If you are using Python <=3.8, you need to import Annotated
# from typing_extensions, not from typing.
from typing_extensions import Annotated, TypedDict

from langchain_ollama import ChatOllama

class AnswerWithJustification(TypedDict):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    justification: Annotated[Optional[str], None, "A justification for the answer."]

llm = ChatOllama(model="llama3.1", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
#     'answer': 'They weigh the same',
#     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
Example: schema=OpenAI function schema, method='function_calling', include_raw=False

.. code-block:: python

from langchain_ollama import ChatOllama

oai_schema = {
    'name': 'AnswerWithJustification',
    'description': 'An answer to the user question along with justification for the answer.',
    'parameters': {
        'type': 'object',
        'properties': {
            'answer': {'type': 'string'},
            'justification': {'description': 'A justification for the answer.', 'type': 'string'}
        },
       'required': ['answer']
   }

}

llm = ChatOllama(model="llama3.1", temperature=0)
structured_llm = llm.with_structured_output(oai_schema)

structured_llm.invoke(
    "What weighs more a pound of bricks or a pound of feathers"
)
# -> {
#     'answer': 'They weigh the same',
#     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
Example: schema=Pydantic class, method='json_mode', include_raw=True

.. code-block::

from langchain_ollama import ChatOllama
from pydantic import BaseModel

class AnswerWithJustification(BaseModel):
    answer: str
    justification: str

llm = ChatOllama(model="llama3.1", temperature=0)
structured_llm = llm.with_structured_output(
    AnswerWithJustification,
    method="json_mode",
    include_raw=True
)

structured_llm.invoke(
    "Answer the following question. "
    "Make sure to return a JSON blob with keys 'answer' and 'justification'.\\n\\n"
    "What's heavier a pound of bricks or a pound of feathers?"
)
# -> {
#     'raw': AIMessage(content='{\\n    "answer": "They are both the same weight.",\\n    "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \\n}'),
#     'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
#     'parsing_error': None
# }

OllamaEmbeddings

Bases: BaseModel, Embeddings

Ollama embedding model integration.

Set up a local Ollama instance

Install the Ollama package <https://github.com/ollama/ollama>__ and set up a local Ollama instance.

You will need to choose a model to serve.

You can view a list of available models via the model library <https://ollama.com/library>__.

To fetch a model from the Ollama model library use ollama pull <name-of-model>.

For example, to pull the llama3 model:

.. code-block:: bash

ollama pull llama3

This will download the default tagged version of the model. Typically, the default points to the latest, smallest sized-parameter model.

  • On Mac, the models will be downloaded to ~/.ollama/models
  • On Linux (or WSL), the models will be stored at /usr/share/ollama/.ollama/models

You can specify the exact version of the model of interest as such ollama pull vicuna:13b-v1.5-16k-q4_0.

To view pulled models:

.. code-block:: bash

ollama list

To start serving:

.. code-block:: bash

ollama serve

View the Ollama documentation for more commands.

.. code-block:: bash

ollama help
Install the langchain-ollama integration package

.. code-block:: bash

pip install -U langchain_ollama

Key init args — completion params: model: str Name of Ollama model to use. base_url: Optional[str] Base url the model is hosted under.

See full list of supported init args and their descriptions in the params section.

Instantiate

.. code-block:: python

from langchain_ollama import OllamaEmbeddings

embed = OllamaEmbeddings(model="llama3")
Embed single text

.. code-block:: python

input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])

.. code-block:: python

[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Embed multiple texts

.. code-block:: python

input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])

.. code-block:: python

2
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Async

.. code-block:: python

vector = await embed.aembed_query(input_text)
print(vector[:3])

# multiple:
# await embed.aembed_documents(input_texts)

.. code-block:: python

[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]

Methods:

Name Description
embed_documents

Embed search docs.

embed_query

Embed query text.

aembed_documents

Embed search docs.

aembed_query

Embed query text.

Attributes:

Name Type Description
model str

Model name to use.

validate_model_on_init bool

Whether to validate the model exists in ollama locally on initialization.

base_url Optional[str]

Base url the model is hosted under.

client_kwargs Optional[dict]

Additional kwargs to pass to the httpx clients. Pass headers in here.

async_client_kwargs Optional[dict]

Additional kwargs to merge with client_kwargs before passing to httpx client.

sync_client_kwargs Optional[dict]

Additional kwargs to merge with client_kwargs before passing to httpx client.

mirostat Optional[int]

Enable Mirostat sampling for controlling perplexity.

mirostat_eta Optional[float]

Influences how quickly the algorithm responds to feedback

mirostat_tau Optional[float]

Controls the balance between coherence and diversity

num_ctx Optional[int]

Sets the size of the context window used to generate the

num_gpu Optional[int]

The number of GPUs to use. On macOS it defaults to 1 to

keep_alive Optional[int]

Controls how long the model will stay loaded into memory

num_thread Optional[int]

Sets the number of threads to use during computation.

repeat_last_n Optional[int]

Sets how far back for the model to look back to prevent

repeat_penalty Optional[float]

Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)

temperature Optional[float]

The temperature of the model. Increasing the temperature will

stop Optional[list[str]]

Sets the stop tokens to use.

tfs_z Optional[float]

Tail free sampling is used to reduce the impact of less probable

top_k Optional[int]

Reduces the probability of generating nonsense. A higher value (e.g. 100)

top_p Optional[float]

Works together with top-k. A higher value (e.g., 0.95) will lead

model instance-attribute

model: str

Model name to use.

validate_model_on_init class-attribute instance-attribute

validate_model_on_init: bool = False

Whether to validate the model exists in ollama locally on initialization.

Added in version 0.3.4

base_url class-attribute instance-attribute

base_url: Optional[str] = None

Base url the model is hosted under.

If none, defaults to the Ollama client default.

Supports userinfo auth in the format http://username:password@localhost:11434. Useful if your Ollama server is behind a proxy.

Warning

userinfo is not secure and should only be used for local testing or in secure environments. Avoid using it in production or over unsecured networks.

Note

If using userinfo, ensure that the Ollama server is configured to accept and validate these credentials.

Note

userinfo headers are passed to both sync and async clients.

client_kwargs class-attribute instance-attribute

client_kwargs: Optional[dict] = {}

Additional kwargs to pass to the httpx clients. Pass headers in here.

These arguments are passed to both synchronous and async clients.

Use sync_client_kwargs and async_client_kwargs to pass different arguments to synchronous and asynchronous clients.

async_client_kwargs class-attribute instance-attribute

async_client_kwargs: Optional[dict] = {}

Additional kwargs to merge with client_kwargs before passing to httpx client.

These are clients unique to the async client; for shared args use client_kwargs.

For a full list of the params, see the httpx documentation <https://www.python-httpx.org/api/#asyncclient>__.

sync_client_kwargs class-attribute instance-attribute

sync_client_kwargs: Optional[dict] = {}

Additional kwargs to merge with client_kwargs before passing to httpx client.

These are clients unique to the sync client; for shared args use client_kwargs.

For a full list of the params, see the httpx documentation <https://www.python-httpx.org/api/#client>__.

mirostat class-attribute instance-attribute

mirostat: Optional[int] = None

Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)

mirostat_eta class-attribute instance-attribute

mirostat_eta: Optional[float] = None

Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1)

mirostat_tau class-attribute instance-attribute

mirostat_tau: Optional[float] = None

Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0)

num_ctx class-attribute instance-attribute

num_ctx: Optional[int] = None

Sets the size of the context window used to generate the next token. (Default: 2048)

num_gpu class-attribute instance-attribute

num_gpu: Optional[int] = None

The number of GPUs to use. On macOS it defaults to 1 to enable metal support, 0 to disable.

keep_alive class-attribute instance-attribute

keep_alive: Optional[int] = None

Controls how long the model will stay loaded into memory following the request (default: 5m)

num_thread class-attribute instance-attribute

num_thread: Optional[int] = None

Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores).

repeat_last_n class-attribute instance-attribute

repeat_last_n: Optional[int] = None

Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)

repeat_penalty class-attribute instance-attribute

repeat_penalty: Optional[float] = None

Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)

temperature class-attribute instance-attribute

temperature: Optional[float] = None

The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)

stop class-attribute instance-attribute

stop: Optional[list[str]] = None

Sets the stop tokens to use.

tfs_z class-attribute instance-attribute

tfs_z: Optional[float] = None

Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1)

top_k class-attribute instance-attribute

top_k: Optional[int] = None

Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)

top_p class-attribute instance-attribute

top_p: Optional[float] = None

Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)

embed_documents

embed_documents(texts: list[str]) -> list[list[float]]

Embed search docs.

embed_query

embed_query(text: str) -> list[float]

Embed query text.

aembed_documents async

aembed_documents(texts: list[str]) -> list[list[float]]

Embed search docs.

aembed_query async

aembed_query(text: str) -> list[float]

Embed query text.

OllamaLLM

Bases: BaseLLM

Ollama large language models.

Setup

Install langchain-ollama and install/run the Ollama server locally:

.. code-block:: bash

pip install -U langchain-ollama
# Visit https://ollama.com/download to download and install Ollama
# (Linux users): start the server with ``ollama serve``

Download a model to use:

.. code-block:: bash

ollama pull llama3.1

Key init args — generation params: model: str Name of the Ollama model to use (e.g. 'llama4'). temperature: Optional[float] Sampling temperature. Higher values make output more creative. num_predict: Optional[int] Maximum number of tokens to predict. top_k: Optional[int] Limits the next token selection to the K most probable tokens. top_p: Optional[float] Nucleus sampling parameter. Higher values lead to more diverse text. mirostat: Optional[int] Enable Mirostat sampling for controlling perplexity. seed: Optional[int] Random number seed for generation reproducibility.

Key init args — client params: base_url: Optional[str] Base URL where Ollama server is hosted. keep_alive: Optional[Union[int, str]] How long the model stays loaded into memory. format: Literal["", "json"] Specify the format of the output.

See full list of supported init args and their descriptions in the params section.

Instantiate

.. code-block:: python

from langchain_ollama import OllamaLLM

llm = OllamaLLM(
    model="llama3.1",
    temperature=0.7,
    num_predict=256,
    # base_url="http://localhost:11434",
    # other params...
)
Invoke

.. code-block:: python

input_text = "The meaning of life is "
response = llm.invoke(input_text)
print(response)

.. code-block::

"a philosophical question that has been contemplated by humans for
centuries..."
Stream

.. code-block:: python

for chunk in llm.stream(input_text):
    print(chunk, end="")

.. code-block::

a philosophical question that has been contemplated by humans for
centuries...
Async

.. code-block:: python

response = await llm.ainvoke(input_text)

# stream:
# async for chunk in llm.astream(input_text):
#     print(chunk, end="")

Methods:

Name Description
get_name

Get the name of the Runnable.

get_input_schema

Get a pydantic model that can be used to validate input to the Runnable.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe runnables.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

__init__
is_lc_serializable

Is this class serializable?

get_lc_namespace

Get the namespace of the langchain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnables that can be set at runtime.

set_verbose

If verbose is None, set it.

with_structured_output

Not implemented on this class.

get_token_ids

Return the ordered ids of the tokens in a text.

get_num_tokens

Get the number of tokens present in the text.

get_num_tokens_from_messages

Get the number of tokens in the messages.

generate

Pass a sequence of prompts to a model and return generations.

agenerate

Asynchronously pass a sequence of prompts to a model and return generations.

__str__

Return a string representation of the object for printing.

dict

Return a dictionary of the LLM.

save

Save the LLM.

Attributes:

Name Type Description
InputType TypeAlias

Get the input type for this runnable.

OutputType type[str]

Get the input type for this runnable.

input_schema type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema type[BaseModel]

Output schema.

config_specs list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_secrets dict[str, str]

A map of constructor argument names to secret ids.

lc_attributes dict

List of attribute names that should be included in the serialized kwargs.

cache BaseCache | bool | None

Whether to cache the response.

verbose bool

Whether to print out response text.

callbacks Callbacks

Callbacks to add to the run trace.

tags list[str] | None

Tags to add to the run trace.

metadata dict[str, Any] | None

Metadata to add to the run trace.

custom_get_token_ids Callable[[str], list[int]] | None

Optional encoder to use for counting tokens.

model str

Model name to use.

reasoning Optional[bool]

Controls the reasoning/thinking mode for

validate_model_on_init bool

Whether to validate the model exists in ollama locally on initialization.

mirostat Optional[int]

Enable Mirostat sampling for controlling perplexity.

mirostat_eta Optional[float]

Influences how quickly the algorithm responds to feedback

mirostat_tau Optional[float]

Controls the balance between coherence and diversity

num_ctx Optional[int]

Sets the size of the context window used to generate the

num_gpu Optional[int]

The number of GPUs to use. On macOS it defaults to 1 to

num_thread Optional[int]

Sets the number of threads to use during computation.

num_predict Optional[int]

Maximum number of tokens to predict when generating text.

repeat_last_n Optional[int]

Sets how far back for the model to look back to prevent

repeat_penalty Optional[float]

Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)

temperature Optional[float]

The temperature of the model. Increasing the temperature will

seed Optional[int]

Sets the random number seed to use for generation. Setting this

stop Optional[list[str]]

Sets the stop tokens to use.

tfs_z Optional[float]

Tail free sampling is used to reduce the impact of less probable

top_k Optional[int]

Reduces the probability of generating nonsense. A higher value (e.g. 100)

top_p Optional[float]

Works together with top-k. A higher value (e.g., 0.95) will lead

format Literal['', 'json']

Specify the format of the output (options: 'json')

keep_alive Optional[Union[int, str]]

How long the model will stay loaded into memory.

base_url Optional[str]

Base url the model is hosted under.

client_kwargs Optional[dict]

Additional kwargs to pass to the httpx clients. Pass headers in here.

async_client_kwargs Optional[dict]

Additional kwargs to merge with client_kwargs before passing to httpx client.

sync_client_kwargs Optional[dict]

Additional kwargs to merge with client_kwargs before passing to httpx client.

InputType property

InputType: TypeAlias

Get the input type for this runnable.

OutputType property

OutputType: type[str]

Get the input type for this runnable.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_secrets property

lc_secrets: dict[str, str]

A map of constructor argument names to secret ids.

For example,

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor. Default is an empty dictionary.

cache class-attribute instance-attribute

cache: BaseCache | bool | None = Field(
    default=None, exclude=True
)

Whether to cache the response.

  • If true, will use the global cache.
  • If false, will not use a cache
  • If None, will use the global cache if it's set, otherwise no cache.
  • If instance of BaseCache, will use the provided cache.

Caching is not currently supported for streaming methods of models.

verbose class-attribute instance-attribute

verbose: bool = Field(
    default_factory=_get_verbosity, exclude=True, repr=False
)

Whether to print out response text.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to add to the run trace.

tags class-attribute instance-attribute

tags: list[str] | None = Field(default=None, exclude=True)

Tags to add to the run trace.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = Field(
    default=None, exclude=True
)

Metadata to add to the run trace.

custom_get_token_ids class-attribute instance-attribute

custom_get_token_ids: Callable[[str], list[int]] | None = (
    Field(default=None, exclude=True)
)

Optional encoder to use for counting tokens.

model instance-attribute

model: str

Model name to use.

reasoning class-attribute instance-attribute

reasoning: Optional[bool] = None

Controls the reasoning/thinking mode for supported models <https://ollama.com/search?c=thinking>__.

  • True: Enables reasoning mode. The model's reasoning process will be captured and returned separately in the additional_kwargs of the response message, under reasoning_content. The main response content will not include the reasoning tags.
  • False: Disables reasoning mode. The model will not perform any reasoning, and the response will not include any reasoning content.
  • None (Default): The model will use its default reasoning behavior. If the model performs reasoning, the <think> and </think> tags will be present directly within the main response content.

validate_model_on_init class-attribute instance-attribute

validate_model_on_init: bool = False

Whether to validate the model exists in ollama locally on initialization.

Added in version 0.3.4

mirostat class-attribute instance-attribute

mirostat: Optional[int] = None

Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)

mirostat_eta class-attribute instance-attribute

mirostat_eta: Optional[float] = None

Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1)

mirostat_tau class-attribute instance-attribute

mirostat_tau: Optional[float] = None

Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0)

num_ctx class-attribute instance-attribute

num_ctx: Optional[int] = None

Sets the size of the context window used to generate the next token. (Default: 2048)

num_gpu class-attribute instance-attribute

num_gpu: Optional[int] = None

The number of GPUs to use. On macOS it defaults to 1 to enable metal support, 0 to disable.

num_thread class-attribute instance-attribute

num_thread: Optional[int] = None

Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores).

num_predict class-attribute instance-attribute

num_predict: Optional[int] = None

Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context)

repeat_last_n class-attribute instance-attribute

repeat_last_n: Optional[int] = None

Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)

repeat_penalty class-attribute instance-attribute

repeat_penalty: Optional[float] = None

Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)

temperature class-attribute instance-attribute

temperature: Optional[float] = None

The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)

seed class-attribute instance-attribute

seed: Optional[int] = None

Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt.

stop class-attribute instance-attribute

stop: Optional[list[str]] = None

Sets the stop tokens to use.

tfs_z class-attribute instance-attribute

tfs_z: Optional[float] = None

Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1)

top_k class-attribute instance-attribute

top_k: Optional[int] = None

Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)

top_p class-attribute instance-attribute

top_p: Optional[float] = None

Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)

format class-attribute instance-attribute

format: Literal['', 'json'] = ''

Specify the format of the output (options: 'json')

keep_alive class-attribute instance-attribute

keep_alive: Optional[Union[int, str]] = None

How long the model will stay loaded into memory.

base_url class-attribute instance-attribute

base_url: Optional[str] = None

Base url the model is hosted under.

If none, defaults to the Ollama client default.

Supports userinfo auth in the format http://username:password@localhost:11434. Useful if your Ollama server is behind a proxy.

Warning

userinfo is not secure and should only be used for local testing or in secure environments. Avoid using it in production or over unsecured networks.

Note

If using userinfo, ensure that the Ollama server is configured to accept and validate these credentials.

Note

userinfo headers are passed to both sync and async clients.

client_kwargs class-attribute instance-attribute

client_kwargs: Optional[dict] = {}

Additional kwargs to pass to the httpx clients. Pass headers in here.

These arguments are passed to both synchronous and async clients.

Use sync_client_kwargs and async_client_kwargs to pass different arguments to synchronous and asynchronous clients.

async_client_kwargs class-attribute instance-attribute

async_client_kwargs: Optional[dict] = {}

Additional kwargs to merge with client_kwargs before passing to httpx client.

These are clients unique to the async client; for shared args use client_kwargs.

For a full list of the params, see the httpx documentation <https://www.python-httpx.org/api/#asyncclient>__.

sync_client_kwargs class-attribute instance-attribute

sync_client_kwargs: Optional[dict] = {}

Additional kwargs to merge with client_kwargs before passing to httpx client.

These are clients unique to the sync client; for shared args use client_kwargs.

For a full list of the params, see the httpx documentation <https://www.python-httpx.org/api/#client>__.

get_name

get_name(
    suffix: str | None = None, *, name: str | None = None
) -> str

Get the name of the Runnable.

Parameters:

Name Type Description Default
suffix str | None

An optional suffix to append to the name.

None
name str | None

An optional name to use instead of the Runnable's name.

None

Returns:

Type Description
str

The name of the Runnable.

get_input_schema

get_input_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate input to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the Runnable is invoked with.

This method allows to get an input schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate input.

get_input_jsonschema

get_input_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate output to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(
    *, include: Sequence[str] | None = None
) -> type[BaseModel]

The type of config this Runnable accepts specified as a pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(
    *, include: Sequence[str] | None = None
) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(
    config: RunnableConfig | None = None,
) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: (
        Runnable[Any, Other]
        | Callable[[Iterator[Any]], Iterator[Other]]
        | Callable[
            [AsyncIterator[Any]], AsyncIterator[Other]
        ]
        | Callable[[Any], Other]
        | Mapping[
            str,
            Runnable[Any, Other]
            | Callable[[Any], Other]
            | Any,
        ]
    ),
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: (
        Runnable[Other, Any]
        | Callable[[Iterator[Other]], Iterator[Any]]
        | Callable[
            [AsyncIterator[Other]], AsyncIterator[Any]
        ]
        | Callable[[Other], Any]
        | Mapping[
            str,
            Runnable[Other, Any]
            | Callable[[Other], Any]
            | Any,
        ]
    ),
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other],
    name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe runnables.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]

Parameters:

Name Type Description Default
*others Runnable[Any, Other] | Callable[[Any], Other]

Other Runnable or Runnable-like objects to compose

()
name str | None

An optional name for the resulting RunnableSequence.

None

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(
    keys: str | list[str],
) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick single key:

```python
import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
```

Pick list of keys:

```python
from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(
    str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
```

Parameters:

Name Type Description Default
keys str | list[str]

A key or list of keys to pick from the output dict.

required

Returns:

Type Description
RunnableSerializable[Any, Any]

a new Runnable.

assign

assign(
    **kwargs: (
        Runnable[dict[str, Any], Any]
        | Callable[[dict[str, Any]], Any]
        | Mapping[
            str,
            Runnable[dict[str, Any], Any]
            | Callable[[dict[str, Any]], Any],
        ]
    ),
) -> RunnableSerializable[Any, Any]

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | llm | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | llm)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}

Parameters:

Name Type Description Default
**kwargs Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]]

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

{}

Returns:

Type Description
RunnableSerializable[Any, Any]

A new Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
diff bool

Whether to yield diffs between each step or the current state.

True
with_streamed_output_list bool

Whether to yield the streamed_output list.

True
include_names Sequence[str] | None

Only include logs with these names.

None
include_types Sequence[str] | None

Only include logs with these types.

None
include_tags Sequence[str] | None

Only include logs with these tags.

None
exclude_names Sequence[str] | None

Exclude logs with these names.

None
exclude_types Sequence[str] | None

Exclude logs with these types.

None
exclude_tags Sequence[str] | None

Exclude logs with these tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: str - Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: str - The name of the Runnable that generated the event.
  • run_id: str - randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: list[str] - The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: Optional[list[str]] - The tags of the Runnable that generated the event.
  • metadata: Optional[dict[str, Any]] - The metadata of the Runnable that generated the event.
  • data: dict[str, Any]

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | event | name | chunk | input | output | +==========================+==================+=====================================+===================================================+=====================================================+ | on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_start | [model name] | | {'input': 'hello'} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_stream | [model name] | 'Hello' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_end | [model name] | | 'Hello human!' | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_start | format_docs | | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_stream | format_docs | 'hello world!, goodbye world!' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_end | format_docs | | [Document(...)] | 'hello world!, goodbye world!' | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_start | some_tool | | {"x": 1, "y": "2"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_end | some_tool | | | {"x": 1, "y": "2"} | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_start | [retriever name] | | {"query": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_start | [template_name] | | {"question": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

+-----------+------+-----------------------------------------------------------------------------------------------------------+ | Attribute | Type | Description | +===========+======+===========================================================================================================+ | name | str | A user defined name for the event. | +-----------+------+-----------------------------------------------------------------------------------------------------------+ | data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. | +-----------+------+-----------------------------------------------------------------------------------------------------------+

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
version Literal['v1', 'v2']

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

'v2'
include_names Sequence[str] | None

Only include events from Runnables with matching names.

None
include_types Sequence[str] | None

Only include events from Runnables with matching types.

None
include_tags Sequence[str] | None

Only include events from Runnables with matching tags.

None
exclude_names Sequence[str] | None

Exclude events from Runnables with matching names.

None
exclude_types Sequence[str] | None

Exclude events from Runnables with matching types.

None
exclude_tags Sequence[str] | None

Exclude events from Runnables with matching tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

{}

Yields:

Type Description
AsyncIterator[StreamEvent]

An async stream of StreamEvents.

Raises:

Type Description
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input Iterator[Input]

An iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input AsyncIterator[Input]

An async iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

Parameters:

Name Type Description Default
kwargs Any

The arguments to bind to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

llm = ChatOllama(model="llama3.1")

# Without bind.
chain = llm | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind.
chain = llm.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

The config to bind to the Runnable.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_end: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_error: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called before the Runnable starts running, with the Run object. Defaults to None.

None
on_end Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start AsyncListener | None

Called asynchronously before the Runnable starts running, with the Run object. Defaults to None.

None
on_end AsyncListener | None

Called asynchronously after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error AsyncListener | None

Called asynchronously if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *,
    input_type: type[Input] | None = None,
    output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
input_type type[Input] | None

The input type to bind to the Runnable. Defaults to None.

None
output_type type[Output] | None

The output type to bind to the Runnable. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[
        type[BaseException], ...
    ] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: (
        ExponentialJitterParams | None
    ) = None,
    stop_after_attempt: int = 3
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

Parameters:

Name Type Description Default
retry_if_exception_type tuple[type[BaseException], ...]

A tuple of exception types to retry on. Defaults to (Exception,).

(Exception,)
wait_exponential_jitter bool

Whether to add jitter to the wait time between retries. Defaults to True.

True
stop_after_attempt int

The maximum number of attempts to make before giving up. Defaults to 3.

3
exponential_jitter_params ExponentialJitterParams | None

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

Returns:

Type Description
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[
        type[BaseException], ...
    ] = (Exception,),
    exception_key: str | None = None
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle. Defaults to (Exception,).

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input. Defaults to None.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle.

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

Parameters:

Name Type Description Default
args_schema type[BaseModel] | None

The schema for the tool. Defaults to None.

None
name str | None

The name of the tool. Defaults to None.

None
description str | None

The description of the tool. Defaults to None.

None
arg_types dict[str, type] | None

A dictionary of argument names to types. Defaults to None.

None

Returns:

Type Description
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

__init__

__init__(*args: Any, **kwargs: Any) -> None

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

Returns:

Type Description
bool

Whether the class is serializable. Default is False.

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the langchain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

Returns:

Type Description
list[str]

The namespace as a list of strings.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object. For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> (
    SerializedConstructor | SerializedNotImplemented
)

Serialize the Runnable to JSON.

Returns:

Type Description
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

Returns:

Type Description
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

Parameters:

Name Type Description Default
**kwargs AnyConfigurableField

A dictionary of ConfigurableField instances to configure.

{}

Raises:

Type Description
ValueError

If a configuration key is not found in the Runnable.

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: (
        Runnable[Input, Output]
        | Callable[[], Runnable[Input, Output]]
    )
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnables that can be set at runtime.

Parameters:

Name Type Description Default
which ConfigurableField

The ConfigurableField instance that will be used to select the alternative.

required
default_key str

The default key to use if no alternative is selected. Defaults to 'default'.

'default'
prefix_keys bool

Whether to prefix the keys with the ConfigurableField id. Defaults to False.

False
**kwargs Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]

A dictionary of keys to Runnable instances or callables that return Runnable instances.

{}

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

set_verbose

set_verbose(verbose: bool | None) -> bool

If verbose is None, set it.

This allows users to pass in None as verbose to access the global setting.

Parameters:

Name Type Description Default
verbose bool | None

The verbosity setting to use.

required

Returns:

Type Description
bool

The verbosity setting to use.

with_structured_output

with_structured_output(
    schema: dict | type, **kwargs: Any
) -> Runnable[LanguageModelInput, dict | BaseModel]

Not implemented on this class.

get_token_ids

get_token_ids(text: str) -> list[int]

Return the ordered ids of the tokens in a text.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
list[int]

A list of ids corresponding to the tokens in the text, in order they occur

list[int]

in the text.

get_num_tokens

get_num_tokens(text: str) -> int

Get the number of tokens present in the text.

Useful for checking if an input fits in a model's context window.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
int

The integer number of tokens in the text.

get_num_tokens_from_messages

get_num_tokens_from_messages(
    messages: list[BaseMessage],
    tools: Sequence | None = None,
) -> int

Get the number of tokens in the messages.

Useful for checking if an input fits in a model's context window.

Note

The base implementation of get_num_tokens_from_messages ignores tool schemas.

Parameters:

Name Type Description Default
messages list[BaseMessage]

The message inputs to tokenize.

required
tools Sequence | None

If provided, sequence of dict, BaseModel, function, or BaseTools to be converted to tool schemas.

None

Returns:

Type Description
int

The sum of the number of tokens across the messages.

generate

generate(
    prompts: list[str],
    stop: list[str] | None = None,
    callbacks: Callbacks | list[Callbacks] | None = None,
    *,
    tags: list[str] | list[list[str]] | None = None,
    metadata: (
        dict[str, Any] | list[dict[str, Any]] | None
    ) = None,
    run_name: str | list[str] | None = None,
    run_id: UUID | list[UUID | None] | None = None,
    **kwargs: Any
) -> LLMResult

Pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
prompts list[str]

List of string prompts.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks | list[Callbacks] | None

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | list[list[str]] | None

List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
metadata dict[str, Any] | list[dict[str, Any]] | None

List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
run_name str | list[str] | None

List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
run_id UUID | list[UUID | None] | None

List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Raises:

Type Description
ValueError

If prompts is not a list.

ValueError

If the length of callbacks, tags, metadata, or run_name (if provided) does not match the length of prompts.

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output.

agenerate async

agenerate(
    prompts: list[str],
    stop: list[str] | None = None,
    callbacks: Callbacks | list[Callbacks] | None = None,
    *,
    tags: list[str] | list[list[str]] | None = None,
    metadata: (
        dict[str, Any] | list[dict[str, Any]] | None
    ) = None,
    run_name: str | list[str] | None = None,
    run_id: UUID | list[UUID | None] | None = None,
    **kwargs: Any
) -> LLMResult

Asynchronously pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
prompts list[str]

List of string prompts.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks | list[Callbacks] | None

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | list[list[str]] | None

List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
metadata dict[str, Any] | list[dict[str, Any]] | None

List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
run_name str | list[str] | None

List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
run_id UUID | list[UUID | None] | None

List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Raises:

Type Description
ValueError

If the length of callbacks, tags, metadata, or run_name (if provided) does not match the length of prompts.

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output.

__str__

__str__() -> str

Return a string representation of the object for printing.

dict

dict(**kwargs: Any) -> dict

Return a dictionary of the LLM.

save

save(file_path: Path | str) -> None

Save the LLM.

Parameters:

Name Type Description Default
file_path Path | str

Path to file to save the LLM to.

required

Raises:

Type Description
ValueError

If the file path is not a string or Path object.

Example:

.. code-block:: python

    llm.save(file_path="path/llm.yaml")