Skip to content

langchain-groq

Groq integration for LangChain.

Modules:

Name Description
chat_models

Groq Chat wrapper.

version

Main entrypoint into package.

Classes:

Name Description
ChatGroq

Groq Chat large language models API.

ChatGroq

Bases: BaseChatModel

Groq Chat large language models API.

To use, you should have the environment variable GROQ_API_KEY set with your API key.

Any parameters that are valid to be passed to the groq.create call can be passed in, even if not explicitly saved on this class.

Setup

Install langchain-groq and set environment variable GROQ_API_KEY.

.. code-block:: bash

pip install -U langchain-groq
export GROQ_API_KEY="your-api-key"

Key init args — completion params: model: str Name of Groq model to use, e.g. llama-3.1-8b-instant. temperature: float Sampling temperature. Ranges from 0.0 to 1.0. max_tokens: Optional[int] Max number of tokens to generate. reasoning_format: Optional[Literal["parsed", "raw", "hidden]] The format for reasoning output. Groq will default to raw if left undefined.

    - ``'parsed'``: Separates reasoning into a dedicated field while keeping the
      response concise. Reasoning will be returned in the
      ``additional_kwargs.reasoning_content`` field of the response.
    - ``'raw'``: Includes reasoning within think tags (e.g.
      ``<think>{reasoning_content}</think>``).
    - ``'hidden'``: Returns only the final answer content. Note: this only
      supresses reasoning content in the response; the model will still perform
      reasoning unless overridden in ``reasoning_effort``.

    See the `Groq documentation
    <https://console.groq.com/docs/reasoning#reasoning>`__ for more
    details and a list of supported models.
model_kwargs: Dict[str, Any]
    Holds any model parameters valid for create call not
    explicitly specified.

Key init args — client params: timeout: Union[float, Tuple[float, float], Any, None] Timeout for requests. max_retries: int Max number of retries. api_key: Optional[str] Groq API key. If not passed in will be read from env var GROQ_API_KEY. base_url: Optional[str] Base URL path for API requests, leave blank if not using a proxy or service emulator. custom_get_token_ids: Optional[Callable[[str], List[int]]] Optional encoder to use for counting tokens.

See full list of supported init args and their descriptions in the params section.

Instantiate

.. code-block:: python

from langchain_groq import ChatGroq

llm = ChatGroq(
    model="llama-3.1-8b-instant",
    temperature=0.0,
    max_retries=2,
    # other params...
)
Invoke

.. code-block:: python

messages = [
    ("system", "You are a helpful translator. Translate the user sentence to French."),
    ("human", "I love programming."),
]
llm.invoke(messages)

.. code-block:: python

AIMessage(content='The English sentence "I love programming" can
be translated to French as "J\'aime programmer". The word
"programming" is translated as "programmer" in French.',
response_metadata={'token_usage': {'completion_tokens': 38,
'prompt_tokens': 28, 'total_tokens': 66, 'completion_time':
0.057975474, 'prompt_time': 0.005366091, 'queue_time': None,
'total_time': 0.063341565}, 'model_name': 'llama-3.1-8b-instant',
'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop',
'logprobs': None}, id='run-ecc71d70-e10c-4b69-8b8c-b8027d95d4b8-0')
Stream

.. code-block:: python

# Streaming `text` for each content chunk received
for chunk in llm.stream(messages):
    print(chunk.text, end="")

.. code-block:: python

content='' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
content='The' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
content=' English' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
content=' sentence' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
...
content=' program' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
content='".' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
content='' response_metadata={'finish_reason': 'stop'}
id='run-4e9f926b-73f5-483b-8ef5-09533d925853

.. code-block:: python

# Reconstructing a full response
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
    full += chunk
full

.. code-block:: python

AIMessageChunk(content='The English sentence "I love programming"
can be translated to French as "J\'aime programmer". Here\'s the
breakdown of the sentence: "J\'aime" is the French equivalent of "
I love", and "programmer" is the French infinitive for "to program".
So, the literal translation is "I love to program". However, in
English we often omit the "to" when talking about activities we
love, and the same applies to French. Therefore, "J\'aime
programmer" is the correct and natural way to express "I love
programming" in French.', response_metadata={'finish_reason':
'stop'}, id='run-a3c35ac4-0750-4d08-ac55-bfc63805de76')
Async

.. code-block:: python

await llm.ainvoke(messages)

.. code-block:: python

AIMessage(content='The English sentence "I love programming" can be translated to French as "J\'aime programmer". The word "programming" is translated as "programmer" in French. I hope this helps! Let me know if you have any other questions.', response_metadata={'token_usage': {'completion_tokens': 53, 'prompt_tokens': 28, 'total_tokens': 81, 'completion_time': 0.083623752, 'prompt_time': 0.007365126, 'queue_time': None, 'total_time': 0.090988878}, 'model_name': 'llama-3.1-8b-instant', 'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop', 'logprobs': None}, id='run-897f3391-1bea-42e2-82e0-686e2367bcf8-0')

Tool calling

.. code-block:: python

from pydantic import BaseModel, Field


class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")


class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")


model_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = model_with_tools.invoke("What is the population of NY?")
ai_msg.tool_calls

.. code-block:: python

[
    {
        "name": "GetPopulation",
        "args": {"location": "NY"},
        "id": "call_bb8d",
    }
]

See ChatGroq.bind_tools() method for more.

Structured output

.. code-block:: python

from typing import Optional

from pydantic import BaseModel, Field


class Joke(BaseModel):
    '''Joke to tell user.'''

    setup: str = Field(description="The setup of the joke")
    punchline: str = Field(description="The punchline to the joke")
    rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")


structured_model = llm.with_structured_output(Joke)
structured_model.invoke("Tell me a joke about cats")

.. code-block:: python

Joke(
    setup="Why don't cats play poker in the jungle?",
    punchline="Too many cheetahs!",
    rating=None,
)

See ChatGroq.with_structured_output() for more.

Methods:

Name Description
get_name

Get the name of the Runnable.

get_input_schema

Get a pydantic model that can be used to validate input to the Runnable.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe runnables.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

__init__
get_lc_namespace

Get the namespace of the langchain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnables that can be set at runtime.

set_verbose

If verbose is None, set it.

get_token_ids

Return the ordered ids of the tokens in a text.

get_num_tokens

Get the number of tokens present in the text.

get_num_tokens_from_messages

Get the number of tokens in the messages.

generate

Pass a sequence of prompts to the model and return model generations.

agenerate

Asynchronously pass a sequence of prompts to a model and return generations.

dict

Return a dictionary of the LLM.

build_extra

Build extra kwargs from additional params that were passed in.

validate_environment

Validate that api key and python package exists in environment.

is_lc_serializable

Return whether this model can be serialized by LangChain.

bind_tools

Bind tool-like objects to this chat model.

with_structured_output

Model wrapper that returns outputs formatted to match the given schema.

Attributes:

Name Type Description
InputType TypeAlias

Get the input type for this runnable.

OutputType Any

Get the output type for this runnable.

input_schema type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema type[BaseModel]

Output schema.

config_specs list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_attributes dict

List of attribute names that should be included in the serialized kwargs.

cache BaseCache | bool | None

Whether to cache the response.

verbose bool

Whether to print out response text.

callbacks Callbacks

Callbacks to add to the run trace.

tags list[str] | None

Tags to add to the run trace.

metadata dict[str, Any] | None

Metadata to add to the run trace.

custom_get_token_ids Callable[[str], list[int]] | None

Optional encoder to use for counting tokens.

rate_limiter BaseRateLimiter | None

An optional rate limiter to use for limiting the number of requests.

disable_streaming bool | Literal['tool_calling']

Whether to disable streaming for this model.

output_version str | None

Version of AIMessage output format to store in message content.

model_name str

Model name to use.

temperature float

What sampling temperature to use.

stop Optional[Union[list[str], str]]

Default stop sequences.

reasoning_format Optional[Literal['parsed', 'raw', 'hidden']]

The format for reasoning output. Groq will default to raw if left undefined.

reasoning_effort Optional[str]

The level of effort the model will put into reasoning. Groq will default to

model_kwargs dict[str, Any]

Holds any model parameters valid for create call not explicitly specified.

groq_api_key Optional[SecretStr]

Automatically inferred from env var GROQ_API_KEY if not provided.

groq_api_base Optional[str]

Base URL path for API requests. Leave blank if not using a proxy or service

request_timeout Union[float, tuple[float, float], Any, None]

Timeout for requests to Groq completion API. Can be float, httpx.Timeout or

max_retries int

Maximum number of retries to make when generating.

streaming bool

Whether to stream the results or not.

n int

Number of chat completions to generate for each prompt.

max_tokens Optional[int]

Maximum number of tokens to generate.

service_tier Literal['on_demand', 'flex', 'auto']

Optional parameter that you can include to specify the service tier you'd like to

http_client Union[Any, None]

Optional httpx.Client.

http_async_client Union[Any, None]

Optional httpx.AsyncClient. Only used for async invocations. Must specify

lc_secrets dict[str, str]

Mapping of secret environment variables.

InputType property

InputType: TypeAlias

Get the input type for this runnable.

OutputType property

OutputType: Any

Get the output type for this runnable.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor. Default is an empty dictionary.

cache class-attribute instance-attribute

cache: BaseCache | bool | None = Field(
    default=None, exclude=True
)

Whether to cache the response.

  • If true, will use the global cache.
  • If false, will not use a cache
  • If None, will use the global cache if it's set, otherwise no cache.
  • If instance of BaseCache, will use the provided cache.

Caching is not currently supported for streaming methods of models.

verbose class-attribute instance-attribute

verbose: bool = Field(
    default_factory=_get_verbosity, exclude=True, repr=False
)

Whether to print out response text.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to add to the run trace.

tags class-attribute instance-attribute

tags: list[str] | None = Field(default=None, exclude=True)

Tags to add to the run trace.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = Field(
    default=None, exclude=True
)

Metadata to add to the run trace.

custom_get_token_ids class-attribute instance-attribute

custom_get_token_ids: Callable[[str], list[int]] | None = (
    Field(default=None, exclude=True)
)

Optional encoder to use for counting tokens.

rate_limiter class-attribute instance-attribute

rate_limiter: BaseRateLimiter | None = Field(
    default=None, exclude=True
)

An optional rate limiter to use for limiting the number of requests.

disable_streaming class-attribute instance-attribute

disable_streaming: bool | Literal['tool_calling'] = False

Whether to disable streaming for this model.

If streaming is bypassed, then stream()/astream()/astream_events() will defer to invoke()/ainvoke().

  • If True, will always bypass streaming case.
  • If 'tool_calling', will bypass streaming case only when the model is called with a tools keyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke()) only when the tools argument is provided. This offers the best of both worlds.
  • If False (default), will always use streaming case if available.

The main reason for this flag is that code might be written using stream() and a user may want to swap out a given model for another model whose the implementation does not properly support streaming.

output_version class-attribute instance-attribute

output_version: str | None = Field(
    default_factory=from_env(
        "LC_OUTPUT_VERSION", default=None
    )
)

Version of AIMessage output format to store in message content.

AIMessage.content_blocks will lazily parse the contents of content into a standard format. This flag can be used to additionally store the standard format in message content, e.g., for serialization purposes.

Supported values:

  • "v0": provider-specific format in content (can lazily-parse with .content_blocks)
  • "v1": standardized format in content (consistent with .content_blocks)

Partner packages (e.g., langchain-openai) can also use this field to roll out new content formats in a backward-compatible way.

Added in version 1.0

model_name class-attribute instance-attribute

model_name: str = Field(alias='model')

Model name to use.

temperature class-attribute instance-attribute

temperature: float = 0.7

What sampling temperature to use.

stop class-attribute instance-attribute

stop: Optional[Union[list[str], str]] = Field(
    default=None, alias="stop_sequences"
)

Default stop sequences.

reasoning_format class-attribute instance-attribute

reasoning_format: Optional[
    Literal["parsed", "raw", "hidden"]
] = Field(default=None)

The format for reasoning output. Groq will default to raw if left undefined.

  • 'parsed': Separates reasoning into a dedicated field while keeping the response concise. Reasoning will be returned in the additional_kwargs.reasoning_content field of the response.
  • 'raw': Includes reasoning within think tags (e.g. <think>{reasoning_content}</think>).
  • 'hidden': Returns only the final answer content. Note: this only supresses reasoning content in the response; the model will still perform reasoning unless overridden in reasoning_effort.

See the Groq documentation <https://console.groq.com/docs/reasoning#reasoning>__ for more details and a list of supported models.

reasoning_effort class-attribute instance-attribute

reasoning_effort: Optional[str] = Field(default=None)

The level of effort the model will put into reasoning. Groq will default to enabling reasoning if left undefined.

See the Groq documentation <https://console.groq.com/docs/reasoning#options-for-reasoning-effort>__ for more details and a list of options and models that support setting a reasoning effort.

model_kwargs class-attribute instance-attribute

model_kwargs: dict[str, Any] = Field(default_factory=dict)

Holds any model parameters valid for create call not explicitly specified.

groq_api_key class-attribute instance-attribute

groq_api_key: Optional[SecretStr] = Field(
    alias="api_key",
    default_factory=secret_from_env(
        "GROQ_API_KEY", default=None
    ),
)

Automatically inferred from env var GROQ_API_KEY if not provided.

groq_api_base class-attribute instance-attribute

groq_api_base: Optional[str] = Field(
    alias="base_url",
    default_factory=from_env("GROQ_API_BASE", default=None),
)

Base URL path for API requests. Leave blank if not using a proxy or service emulator.

request_timeout class-attribute instance-attribute

request_timeout: Union[
    float, tuple[float, float], Any, None
] = Field(default=None, alias="timeout")

Timeout for requests to Groq completion API. Can be float, httpx.Timeout or None.

max_retries class-attribute instance-attribute

max_retries: int = 2

Maximum number of retries to make when generating.

streaming class-attribute instance-attribute

streaming: bool = False

Whether to stream the results or not.

n class-attribute instance-attribute

n: int = 1

Number of chat completions to generate for each prompt.

max_tokens class-attribute instance-attribute

max_tokens: Optional[int] = None

Maximum number of tokens to generate.

service_tier class-attribute instance-attribute

service_tier: Literal["on_demand", "flex", "auto"] = Field(
    default="on_demand"
)

Optional parameter that you can include to specify the service tier you'd like to use for requests.

  • 'on_demand': Default.
  • 'flex': On-demand processing when capacity is available, with rapid timeouts if resources are constrained. Provides balance between performance and reliability for workloads that don't require guaranteed processing.
  • 'auto': Uses on-demand rate limits, then falls back to 'flex' if those limits are exceeded

See the Groq documentation <https://console.groq.com/docs/flex-processing>__ for more details and a list of service tiers and descriptions.

http_client class-attribute instance-attribute

http_client: Union[Any, None] = None

Optional httpx.Client.

http_async_client class-attribute instance-attribute

http_async_client: Union[Any, None] = None

Optional httpx.AsyncClient. Only used for async invocations. Must specify http_client as well if you'd like a custom client for sync invocations.

lc_secrets property

lc_secrets: dict[str, str]

Mapping of secret environment variables.

get_name

get_name(
    suffix: str | None = None, *, name: str | None = None
) -> str

Get the name of the Runnable.

Parameters:

Name Type Description Default
suffix str | None

An optional suffix to append to the name.

None
name str | None

An optional name to use instead of the Runnable's name.

None

Returns:

Type Description
str

The name of the Runnable.

get_input_schema

get_input_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate input to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the Runnable is invoked with.

This method allows to get an input schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate input.

get_input_jsonschema

get_input_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate output to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(
    *, include: Sequence[str] | None = None
) -> type[BaseModel]

The type of config this Runnable accepts specified as a pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(
    *, include: Sequence[str] | None = None
) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(
    config: RunnableConfig | None = None,
) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: (
        Runnable[Any, Other]
        | Callable[[Iterator[Any]], Iterator[Other]]
        | Callable[
            [AsyncIterator[Any]], AsyncIterator[Other]
        ]
        | Callable[[Any], Other]
        | Mapping[
            str,
            Runnable[Any, Other]
            | Callable[[Any], Other]
            | Any,
        ]
    ),
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: (
        Runnable[Other, Any]
        | Callable[[Iterator[Other]], Iterator[Any]]
        | Callable[
            [AsyncIterator[Other]], AsyncIterator[Any]
        ]
        | Callable[[Other], Any]
        | Mapping[
            str,
            Runnable[Other, Any]
            | Callable[[Other], Any]
            | Any,
        ]
    ),
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other],
    name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe runnables.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]

Parameters:

Name Type Description Default
*others Runnable[Any, Other] | Callable[[Any], Other]

Other Runnable or Runnable-like objects to compose

()
name str | None

An optional name for the resulting RunnableSequence.

None

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(
    keys: str | list[str],
) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick single key:

```python
import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
```

Pick list of keys:

```python
from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(
    str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
```

Parameters:

Name Type Description Default
keys str | list[str]

A key or list of keys to pick from the output dict.

required

Returns:

Type Description
RunnableSerializable[Any, Any]

a new Runnable.

assign

assign(
    **kwargs: (
        Runnable[dict[str, Any], Any]
        | Callable[[dict[str, Any]], Any]
        | Mapping[
            str,
            Runnable[dict[str, Any], Any]
            | Callable[[dict[str, Any]], Any],
        ]
    ),
) -> RunnableSerializable[Any, Any]

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | llm | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | llm)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}

Parameters:

Name Type Description Default
**kwargs Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]]

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

{}

Returns:

Type Description
RunnableSerializable[Any, Any]

A new Runnable.

batch

batch(
    inputs: list[Input],
    config: (
        RunnableConfig | list[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> list[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters:

Name Type Description Default
inputs list[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | list[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[Input],
    config: (
        RunnableConfig | list[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> list[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters:

Name Type Description Default
inputs list[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | list[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
diff bool

Whether to yield diffs between each step or the current state.

True
with_streamed_output_list bool

Whether to yield the streamed_output list.

True
include_names Sequence[str] | None

Only include logs with these names.

None
include_types Sequence[str] | None

Only include logs with these types.

None
include_tags Sequence[str] | None

Only include logs with these tags.

None
exclude_names Sequence[str] | None

Exclude logs with these names.

None
exclude_types Sequence[str] | None

Exclude logs with these types.

None
exclude_tags Sequence[str] | None

Exclude logs with these tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: str - Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: str - The name of the Runnable that generated the event.
  • run_id: str - randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: list[str] - The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: Optional[list[str]] - The tags of the Runnable that generated the event.
  • metadata: Optional[dict[str, Any]] - The metadata of the Runnable that generated the event.
  • data: dict[str, Any]

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | event | name | chunk | input | output | +==========================+==================+=====================================+===================================================+=====================================================+ | on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_start | [model name] | | {'input': 'hello'} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_stream | [model name] | 'Hello' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_end | [model name] | | 'Hello human!' | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_start | format_docs | | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_stream | format_docs | 'hello world!, goodbye world!' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_end | format_docs | | [Document(...)] | 'hello world!, goodbye world!' | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_start | some_tool | | {"x": 1, "y": "2"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_end | some_tool | | | {"x": 1, "y": "2"} | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_start | [retriever name] | | {"query": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_start | [template_name] | | {"question": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

+-----------+------+-----------------------------------------------------------------------------------------------------------+ | Attribute | Type | Description | +===========+======+===========================================================================================================+ | name | str | A user defined name for the event. | +-----------+------+-----------------------------------------------------------------------------------------------------------+ | data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. | +-----------+------+-----------------------------------------------------------------------------------------------------------+

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
version Literal['v1', 'v2']

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

'v2'
include_names Sequence[str] | None

Only include events from Runnables with matching names.

None
include_types Sequence[str] | None

Only include events from Runnables with matching types.

None
include_tags Sequence[str] | None

Only include events from Runnables with matching tags.

None
exclude_names Sequence[str] | None

Exclude events from Runnables with matching names.

None
exclude_types Sequence[str] | None

Exclude events from Runnables with matching types.

None
exclude_tags Sequence[str] | None

Exclude events from Runnables with matching tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

{}

Yields:

Type Description
AsyncIterator[StreamEvent]

An async stream of StreamEvents.

Raises:

Type Description
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input Iterator[Input]

An iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input AsyncIterator[Input]

An async iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

Parameters:

Name Type Description Default
kwargs Any

The arguments to bind to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

llm = ChatOllama(model="llama3.1")

# Without bind.
chain = llm | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind.
chain = llm.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

The config to bind to the Runnable.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_end: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_error: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called before the Runnable starts running, with the Run object. Defaults to None.

None
on_end Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start AsyncListener | None

Called asynchronously before the Runnable starts running, with the Run object. Defaults to None.

None
on_end AsyncListener | None

Called asynchronously after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error AsyncListener | None

Called asynchronously if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *,
    input_type: type[Input] | None = None,
    output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
input_type type[Input] | None

The input type to bind to the Runnable. Defaults to None.

None
output_type type[Output] | None

The output type to bind to the Runnable. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[
        type[BaseException], ...
    ] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: (
        ExponentialJitterParams | None
    ) = None,
    stop_after_attempt: int = 3
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

Parameters:

Name Type Description Default
retry_if_exception_type tuple[type[BaseException], ...]

A tuple of exception types to retry on. Defaults to (Exception,).

(Exception,)
wait_exponential_jitter bool

Whether to add jitter to the wait time between retries. Defaults to True.

True
stop_after_attempt int

The maximum number of attempts to make before giving up. Defaults to 3.

3
exponential_jitter_params ExponentialJitterParams | None

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

Returns:

Type Description
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[
        type[BaseException], ...
    ] = (Exception,),
    exception_key: str | None = None
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle. Defaults to (Exception,).

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input. Defaults to None.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle.

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

Parameters:

Name Type Description Default
args_schema type[BaseModel] | None

The schema for the tool. Defaults to None.

None
name str | None

The name of the tool. Defaults to None.

None
description str | None

The description of the tool. Defaults to None.

None
arg_types dict[str, type] | None

A dictionary of argument names to types. Defaults to None.

None

Returns:

Type Description
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

__init__

__init__(*args: Any, **kwargs: Any) -> None

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the langchain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

Returns:

Type Description
list[str]

The namespace as a list of strings.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object. For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> (
    SerializedConstructor | SerializedNotImplemented
)

Serialize the Runnable to JSON.

Returns:

Type Description
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

Returns:

Type Description
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

Parameters:

Name Type Description Default
**kwargs AnyConfigurableField

A dictionary of ConfigurableField instances to configure.

{}

Raises:

Type Description
ValueError

If a configuration key is not found in the Runnable.

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: (
        Runnable[Input, Output]
        | Callable[[], Runnable[Input, Output]]
    )
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnables that can be set at runtime.

Parameters:

Name Type Description Default
which ConfigurableField

The ConfigurableField instance that will be used to select the alternative.

required
default_key str

The default key to use if no alternative is selected. Defaults to 'default'.

'default'
prefix_keys bool

Whether to prefix the keys with the ConfigurableField id. Defaults to False.

False
**kwargs Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]

A dictionary of keys to Runnable instances or callables that return Runnable instances.

{}

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

set_verbose

set_verbose(verbose: bool | None) -> bool

If verbose is None, set it.

This allows users to pass in None as verbose to access the global setting.

Parameters:

Name Type Description Default
verbose bool | None

The verbosity setting to use.

required

Returns:

Type Description
bool

The verbosity setting to use.

get_token_ids

get_token_ids(text: str) -> list[int]

Return the ordered ids of the tokens in a text.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
list[int]

A list of ids corresponding to the tokens in the text, in order they occur

list[int]

in the text.

get_num_tokens

get_num_tokens(text: str) -> int

Get the number of tokens present in the text.

Useful for checking if an input fits in a model's context window.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
int

The integer number of tokens in the text.

get_num_tokens_from_messages

get_num_tokens_from_messages(
    messages: list[BaseMessage],
    tools: Sequence | None = None,
) -> int

Get the number of tokens in the messages.

Useful for checking if an input fits in a model's context window.

Note

The base implementation of get_num_tokens_from_messages ignores tool schemas.

Parameters:

Name Type Description Default
messages list[BaseMessage]

The message inputs to tokenize.

required
tools Sequence | None

If provided, sequence of dict, BaseModel, function, or BaseTools to be converted to tool schemas.

None

Returns:

Type Description
int

The sum of the number of tokens across the messages.

generate

generate(
    messages: list[list[BaseMessage]],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    **kwargs: Any
) -> LLMResult

Pass a sequence of prompts to the model and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
messages list[list[BaseMessage]]

List of list of messages.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | None

The tags to apply.

None
metadata dict[str, Any] | None

The metadata to apply.

None
run_name str | None

The name of the run.

None
run_id UUID | None

The ID of the run.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input

LLMResult

prompt and additional model provider-specific output.

agenerate async

agenerate(
    messages: list[list[BaseMessage]],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    **kwargs: Any
) -> LLMResult

Asynchronously pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
messages list[list[BaseMessage]]

List of list of messages.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | None

The tags to apply.

None
metadata dict[str, Any] | None

The metadata to apply.

None
run_name str | None

The name of the run.

None
run_id UUID | None

The ID of the run.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input

LLMResult

prompt and additional model provider-specific output.

dict

dict(**kwargs: Any) -> dict

Return a dictionary of the LLM.

build_extra classmethod

build_extra(values: dict[str, Any]) -> Any

Build extra kwargs from additional params that were passed in.

validate_environment

validate_environment() -> Self

Validate that api key and python package exists in environment.

is_lc_serializable classmethod

is_lc_serializable() -> bool

Return whether this model can be serialized by LangChain.

bind_tools

bind_tools(
    tools: Sequence[
        Union[
            dict[str, Any],
            type[BaseModel],
            Callable,
            BaseTool,
        ]
    ],
    *,
    tool_choice: Optional[
        Union[
            dict, str, Literal["auto", "any", "none"], bool
        ]
    ] = None,
    **kwargs: Any
) -> Runnable[LanguageModelInput, AIMessage]

Bind tool-like objects to this chat model.

Parameters:

Name Type Description Default
tools Sequence[Union[dict[str, Any], type[BaseModel], Callable, BaseTool]]

A list of tool definitions to bind to this chat model. Supports any tool definition handled by langchain_core.utils.function_calling.convert_to_openai_tool.

required
tool_choice Optional[Union[dict, str, Literal['auto', 'any', 'none'], bool]]

Which tool to require the model to call. Must be the name of the single provided function, "auto" to automatically determine which function to call with the option to not call any function, "any" to enforce that some function is called, or a dict of the form: {"type": "function", "function": {"name": <<tool_name>>}}.

None
**kwargs Any

Any additional parameters to pass to the langchain.runnable.Runnable constructor.

{}

with_structured_output

with_structured_output(
    schema: Optional[Union[dict, type[BaseModel]]] = None,
    *,
    method: Literal[
        "function_calling", "json_mode", "json_schema"
    ] = "function_calling",
    include_raw: bool = False,
    **kwargs: Any
) -> Runnable[LanguageModelInput, dict | BaseModel]

Model wrapper that returns outputs formatted to match the given schema.

Parameters:

Name Type Description Default
schema Optional[Union[dict, type[BaseModel]]]

The output schema. Can be passed in as:

  • an OpenAI function/tool schema,
  • a JSON Schema,
  • a TypedDict class (supported added in 0.1.9),
  • or a Pydantic class.

If schema is a Pydantic class then the model output will be a Pydantic instance of that class, and the model-generated fields will be validated by the Pydantic class. Otherwise the model output will be a dict and will not be validated. See langchain_core.utils.function_calling.convert_to_openai_tool for more on how to properly specify types and descriptions of schema fields when specifying a Pydantic or TypedDict class.

Behavior changed in 0.1.9

Added support for TypedDict class.

Behavior changed in 0.3.8

Added support for Groq's dedicated structured output feature via method="json_schema".

None
method Literal['function_calling', 'json_mode', 'json_schema']

The method for steering model generation, one of:

  • 'function_calling': Uses Groq's tool-calling API <https://console.groq.com/docs/tool-use>__
  • 'json_schema': Uses Groq's Structured Output API <https://console.groq.com/docs/structured-outputs>. Supported for a subset of models, including openai/gpt-oss, moonshotai/kimi-k2-instruct-0905, and some meta-llama/llama-4 models. See docs <https://console.groq.com/docs/structured-outputs> for details.
  • 'json_mode': Uses Groq's JSON mode <https://console.groq.com/docs/structured-outputs#json-object-mode>__. Note that if using JSON mode then you must include instructions for formatting the output into the desired schema into the model call

Learn more about the differences between the methods and which models support which methods here <https://console.groq.com/docs/structured-outputs>__.

'function_calling'
method Literal['function_calling', 'json_mode', 'json_schema']

The method for steering model generation, either 'function_calling' or 'json_mode'. If 'function_calling' then the schema will be converted to an OpenAI function and the returned model will make use of the function-calling API. If 'json_mode' then JSON mode will be used.

Note

If using 'json_mode' then you must include instructions for formatting the output into the desired schema into the model call. (either via the prompt itself or in the system message/prompt/instructions).

Warning

'json_mode' does not support streaming responses stop sequences.

'function_calling'
include_raw bool

If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys 'raw', 'parsed', and 'parsing_error'.

False
kwargs Any

Any additional parameters to pass to the langchain.runnable.Runnable constructor.

{}

Returns:

Type Description
Runnable[LanguageModelInput, dict | BaseModel]

A Runnable that takes same inputs as a langchain_core.language_models.chat.BaseChatModel.

Runnable[LanguageModelInput, dict | BaseModel]

If include_raw is False and schema is a Pydantic class, Runnable outputs

Runnable[LanguageModelInput, dict | BaseModel]

an instance of schema (i.e., a Pydantic object).

Runnable[LanguageModelInput, dict | BaseModel]

Otherwise, if include_raw is False then Runnable outputs a dict.

Runnable[LanguageModelInput, dict | BaseModel]

If include_raw is True, then Runnable outputs a dict with keys:

Runnable[LanguageModelInput, dict | BaseModel]
  • 'raw': BaseMessage
Runnable[LanguageModelInput, dict | BaseModel]
  • 'parsed': None if there was a parsing error, otherwise the type depends on the schema as described above.
Runnable[LanguageModelInput, dict | BaseModel]
  • 'parsing_error': Optional[BaseException]

Example: schema=Pydantic class, method="function_calling", include_raw=False:

.. code-block:: python

    from typing import Optional

    from langchain_groq import ChatGroq
    from pydantic import BaseModel, Field


    class AnswerWithJustification(BaseModel):
        '''An answer to the user question along with justification for the answer.'''

        answer: str
        # If we provide default values and/or descriptions for fields, these will be passed
        # to the model. This is an important part of improving a model's ability to
        # correctly return structured outputs.
        justification: Optional[str] = Field(
            default=None, description="A justification for the answer."
        )


    llm = ChatGroq(model="openai/gpt-oss-120b", temperature=0)
    structured_llm = llm.with_structured_output(AnswerWithJustification)

    structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")

    # -> AnswerWithJustification(
    #     answer='They weigh the same',
    #     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
    # )
schema=Pydantic class, method="function_calling", include_raw=True:

.. code-block:: python

from langchain_groq import ChatGroq
from pydantic import BaseModel


class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    justification: str


llm = ChatGroq(model="openai/gpt-oss-120b", temperature=0)
structured_llm = llm.with_structured_output(
    AnswerWithJustification,
    include_raw=True,
)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
#     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
#     'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
#     'parsing_error': None
# }
schema=TypedDict class, method="function_calling", include_raw=False:

.. code-block:: python

# IMPORTANT: If you are using Python <=3.8, you need to import Annotated
# from typing_extensions, not from typing.
from typing_extensions import Annotated, TypedDict

from langchain_groq import ChatGroq


class AnswerWithJustification(TypedDict):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    justification: Annotated[Optional[str], None, "A justification for the answer."]


llm = ChatGroq(model="openai/gpt-oss-120b", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
#     'answer': 'They weigh the same',
#     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
schema=OpenAI function schema, method="function_calling", include_raw=False:

.. code-block:: python

from langchain_groq import ChatGroq

oai_schema = {
    'name': 'AnswerWithJustification',
    'description': 'An answer to the user question along with justification for the answer.',
    'parameters': {
        'type': 'object',
        'properties': {
            'answer': {'type': 'string'},
            'justification': {'description': 'A justification for the answer.', 'type': 'string'}
        },
       'required': ['answer']
   }

}

llm = ChatGroq(model="openai/gpt-oss-120b", temperature=0)
structured_llm = llm.with_structured_output(oai_schema)

structured_llm.invoke(
    "What weighs more a pound of bricks or a pound of feathers"
)
# -> {
#     'answer': 'They weigh the same',
#     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
schema=Pydantic class, method="json_schema", include_raw=False:

.. code-block:: python

from typing import Optional

from langchain_groq import ChatGroq
from pydantic import BaseModel, Field


class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    # If we provide default values and/or descriptions for fields, these will be passed
    # to the model. This is an important part of improving a model's ability to
    # correctly return structured outputs.
    justification: Optional[str] = Field(
        default=None, description="A justification for the answer."
    )


llm = ChatGroq(model="openai/gpt-oss-120b", temperature=0)
structured_llm = llm.with_structured_output(
    AnswerWithJustification,
    method="json_schema",
)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")

# -> AnswerWithJustification(
#     answer='They weigh the same',
#     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
schema=Pydantic class, method="json_mode", include_raw=True:

.. code-block::

from langchain_groq import ChatGroq
from pydantic import BaseModel

class AnswerWithJustification(BaseModel):
    answer: str
    justification: str

llm = ChatGroq(model="openai/gpt-oss-120b", temperature=0)
structured_llm = llm.with_structured_output(
    AnswerWithJustification,
    method="json_mode",
    include_raw=True
)

structured_llm.invoke(
    "Answer the following question. "
    "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
    "What's heavier a pound of bricks or a pound of feathers?"
)
# -> {
#     'raw': AIMessage(content='{\n    "answer": "They are both the same weight.",\n    "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
#     'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
#     'parsing_error': None
# }