Skip to content

langchain-google-genai

LangChain Google Generative AI Integration.

This module integrates Google's Generative AI models, specifically the Gemini series, with the LangChain framework. It provides classes for interacting with chat models and generating embeddings, leveraging Google's advanced AI capabilities.

Chat Models

The ChatGoogleGenerativeAI class is the primary interface for interacting with Google's Gemini chat models. It allows users to send and receive messages using a specified Gemini model, suitable for various conversational AI applications.

LLMs

The GoogleGenerativeAI class is the primary interface for interacting with Google's Gemini LLMs. It allows users to generate text using a specified Gemini model.

Embeddings

The GoogleGenerativeAIEmbeddings class provides functionalities to generate embeddings using Google's models. These embeddings can be used for a range of NLP tasks, including semantic analysis, similarity comparisons, and more.

Installation

To install the package, use pip:

.. code-block:: python pip install -U langchain-google-genai

Using Chat Models

After setting up your environment with the required API key, you can interact with the Google Gemini models.

.. code-block:: python

from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-2.5-pro")
llm.invoke("Sing a ballad of LangChain.")

Using LLMs

The package also supports generating text with Google's models.

.. code-block:: python

from langchain_google_genai import GoogleGenerativeAI

llm = GoogleGenerativeAI(model="gemini-2.5-pro")
llm.invoke("Once upon a time, a library called LangChain")

Embedding Generation

The package also supports creating embeddings with Google's models, useful for textual similarity and other NLP applications.

.. code-block:: python

from langchain_google_genai import GoogleGenerativeAIEmbeddings

embeddings = GoogleGenerativeAIEmbeddings(model="models/gemini-embedding-001")
embeddings.embed_query("hello, world!")

Modules:

Name Description
chat_models
embeddings
genai_aqa

Google GenerativeAI Attributed Question and Answering (AQA) service.

google_vector_store

Google Generative AI Vector Store.

llms

Classes:

Name Description
ChatGoogleGenerativeAI

Google AI chat models integration.

GoogleGenerativeAIEmbeddings

Google Generative AI Embeddings.

AqaInput

Input to GenAIAqa.invoke.

AqaOutput

Output from GenAIAqa.invoke.

GenAIAqa

Google's Attributed Question and Answering service.

GoogleVectorStore

Google GenerativeAI Vector Store.

GoogleGenerativeAI

Google GenerativeAI models.

ChatGoogleGenerativeAI

Bases: _BaseGoogleGenerativeAI, BaseChatModel

Google AI chat models integration.

Instantiation

To use, you must have either:

1. The ``GOOGLE_API_KEY`` environment variable set with your API key, or
2. Pass your API key using the ``google_api_key`` kwarg to the
ChatGoogleGenerativeAI constructor.

.. code-block:: python

from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash")
llm.invoke("Write me a ballad about LangChain")
Invoke

.. code-block:: python

messages = [
    ("system", "Translate the user sentence to French."),
    ("human", "I love programming."),
]
llm.invoke(messages)

.. code-block:: python

AIMessage(
    content="J'adore programmer. \\n",
    response_metadata={
        "prompt_feedback": {"block_reason": 0, "safety_ratings": []},
        "finish_reason": "STOP",
        "safety_ratings": [
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
        ],
    },
    id="run-56cecc34-2e54-4b52-a974-337e47008ad2-0",
    usage_metadata={
        "input_tokens": 18,
        "output_tokens": 5,
        "total_tokens": 23,
    },
)
Stream

.. code-block:: python

for chunk in llm.stream(messages):
    print(chunk)

.. code-block:: python

AIMessageChunk(
    content="J",
    response_metadata={"finish_reason": "STOP", "safety_ratings": []},
    id="run-e905f4f4-58cb-4a10-a960-448a2bb649e3",
    usage_metadata={
        "input_tokens": 18,
        "output_tokens": 1,
        "total_tokens": 19,
    },
)
AIMessageChunk(
    content="'adore programmer. \\n",
    response_metadata={
        "finish_reason": "STOP",
        "safety_ratings": [
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
        ],
    },
    id="run-e905f4f4-58cb-4a10-a960-448a2bb649e3",
    usage_metadata={
        "input_tokens": 18,
        "output_tokens": 5,
        "total_tokens": 23,
    },
)

.. code-block:: python

stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
    full += chunk
full

.. code-block:: python

AIMessageChunk(
    content="J'adore programmer. \\n",
    response_metadata={
        "finish_reason": "STOPSTOP",
        "safety_ratings": [
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
        ],
    },
    id="run-3ce13a42-cd30-4ad7-a684-f1f0b37cdeec",
    usage_metadata={
        "input_tokens": 36,
        "output_tokens": 6,
        "total_tokens": 42,
    },
)
Async

.. code-block:: python

await llm.ainvoke(messages)

# stream:
# async for chunk in (await llm.astream(messages))

# batch:
# await llm.abatch([messages])
Context Caching

Context caching allows you to store and reuse content (e.g., PDFs, images) for faster processing. The cached_content parameter accepts a cache name created via the Google Generative AI API. Below are two examples: caching a single file directly and caching multiple files using Part.

Single File Example: This caches a single file and queries it.

.. code-block:: python

from google import genai
from google.genai import types
import time
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage

client = genai.Client()

# Upload file
file = client.files.upload(file="./example_file")
while file.state.name == "PROCESSING":
    time.sleep(2)
    file = client.files.get(name=file.name)

# Create cache
model = "models/gemini-2.5-flash"
cache = client.caches.create(
    model=model,
    config=types.CreateCachedContentConfig(
        display_name="Cached Content",
        system_instruction=(
            "You are an expert content analyzer, and your job is to answer "
            "the user's query based on the file you have access to."
        ),
        contents=[file],
        ttl="300s",
    ),
)

# Query with LangChain
llm = ChatGoogleGenerativeAI(
    model=model,
    cached_content=cache.name,
)
message = HumanMessage(content="Summarize the main points of the content.")
llm.invoke([message])

Multiple Files Example: This caches two files using Part and queries them together.

.. code-block:: python

from google import genai
from google.genai.types import CreateCachedContentConfig, Content, Part
import time
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage

client = genai.Client()

# Upload files
file_1 = client.files.upload(file="./file1")
while file_1.state.name == "PROCESSING":
    time.sleep(2)
    file_1 = client.files.get(name=file_1.name)

file_2 = client.files.upload(file="./file2")
while file_2.state.name == "PROCESSING":
    time.sleep(2)
    file_2 = client.files.get(name=file_2.name)

# Create cache with multiple files
contents = [
    Content(
        role="user",
        parts=[
            Part.from_uri(file_uri=file_1.uri, mime_type=file_1.mime_type),
            Part.from_uri(file_uri=file_2.uri, mime_type=file_2.mime_type),
        ],
    )
]
model = "gemini-2.5-flash"
cache = client.caches.create(
    model=model,
    config=CreateCachedContentConfig(
        display_name="Cached Contents",
        system_instruction=(
            "You are an expert content analyzer, and your job is to answer "
            "the user's query based on the files you have access to."
        ),
        contents=contents,
        ttl="300s",
    ),
)

# Query with LangChain
llm = ChatGoogleGenerativeAI(
    model=model,
    cached_content=cache.name,
)
message = HumanMessage(
    content="Provide a summary of the key information across both files."
)
llm.invoke([message])
Tool calling

.. code-block:: python

from pydantic import BaseModel, Field


class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(
        ..., description="The city and state, e.g. San Francisco, CA"
    )


class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(
        ..., description="The city and state, e.g. San Francisco, CA"
    )


llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke(
    "Which city is hotter today and which is bigger: LA or NY?"
)
ai_msg.tool_calls

.. code-block:: python

[
    {
        "name": "GetWeather",
        "args": {"location": "Los Angeles, CA"},
        "id": "c186c99f-f137-4d52-947f-9e3deabba6f6",
    },
    {
        "name": "GetWeather",
        "args": {"location": "New York City, NY"},
        "id": "cebd4a5d-e800-4fa5-babd-4aa286af4f31",
    },
    {
        "name": "GetPopulation",
        "args": {"location": "Los Angeles, CA"},
        "id": "4f92d897-f5e4-4d34-a3bc-93062c92591e",
    },
    {
        "name": "GetPopulation",
        "args": {"location": "New York City, NY"},
        "id": "634582de-5186-4e4b-968b-f192f0a93678",
    },
]
Use Search with Gemini 2

.. code-block:: python

from google.ai.generativelanguage_v1beta.types import Tool as GenAITool

llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash")
resp = llm.invoke(
    "When is the next total solar eclipse in US?",
    tools=[GenAITool(google_search={})],
)
Structured output

.. code-block:: python

from typing import Optional

from pydantic import BaseModel, Field


class Joke(BaseModel):
    '''Joke to tell user.'''

    setup: str = Field(description="The setup of the joke")
    punchline: str = Field(description="The punchline to the joke")
    rating: Optional[int] = Field(
        description="How funny the joke is, from 1 to 10"
    )


# Default method uses function calling
structured_llm = llm.with_structured_output(Joke)

# For more reliable output, use json_schema with native responseSchema
structured_llm_json = llm.with_structured_output(Joke, method="json_schema")
structured_llm_json.invoke("Tell me a joke about cats")

.. code-block:: python

Joke(
    setup="Why are cats so good at video games?",
    punchline="They have nine lives on the internet",
    rating=None,
)

Two methods are supported for structured output:

  • method="function_calling" (default): Uses tool calling to extract structured data. Compatible with all models.
  • method="json_schema": Uses Gemini's native structured output with responseSchema. More reliable but requires Gemini 1.5+ models. method="json_mode" also works for backwards compatibility but is a misnomer.

The json_schema method is recommended for better reliability as it constrains the model's generation process directly rather than relying on post-processing tool calls.

Image input

.. code-block:: python

import base64
import httpx
from langchain_core.messages import HumanMessage

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content

.. code-block:: python

"The weather in this image appears to be sunny and pleasant. The sky is a
bright blue with scattered white clouds, suggesting fair weather. The lush
green grass and trees indicate a warm and possibly slightly breezy day.
There are no signs of rain or storms."
PDF input

.. code-block:: python

import base64
from langchain_core.messages import HumanMessage

pdf_bytes = open("/path/to/your/test.pdf", "rb").read()
pdf_base64 = base64.b64encode(pdf_bytes).decode("utf-8")

message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the document in a sentence"},
        {
            "type": "file",
            "source_type": "base64",
            "mime_type": "application/pdf",
            "data": pdf_base64,
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content

.. code-block:: python

"This research paper describes a system developed for SemEval-2025 Task 9,
which aims to automate the detection of food hazards from recall reports,
addressing the class imbalance problem by leveraging LLM-based data
augmentation techniques and transformer-based models to improve
performance."
Video input

.. code-block:: python

import base64
from langchain_core.messages import HumanMessage

video_bytes = open("/path/to/your/video.mp4", "rb").read()
video_base64 = base64.b64encode(video_bytes).decode("utf-8")

message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "describe what's in this video in a sentence",
        },
        {
            "type": "file",
            "source_type": "base64",
            "mime_type": "video/mp4",
            "data": video_base64,
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content

.. code-block:: python

"Tom and Jerry, along with a turkey, engage in a chaotic Thanksgiving-themed
adventure involving a corn-on-the-cob chase, maze antics, and a disastrous
attempt to prepare a turkey dinner."

You can also pass YouTube URLs directly:

.. code-block:: python

from langchain_core.messages import HumanMessage

message = HumanMessage(
    content=[
        {"type": "text", "text": "summarize the video in 3 sentences."},
        {
            "type": "media",
            "file_uri": "https://www.youtube.com/watch?v=9hE5-98ZeCg",
            "mime_type": "video/mp4",
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content

.. code-block:: python

"The video is a demo of multimodal live streaming in Gemini 2.0. The
narrator is sharing his screen in AI Studio and asks if the AI can see it.
The AI then reads text that is highlighted on the screen, defines the word
“multimodal,” and summarizes everything that was seen and heard."
Audio input

.. code-block:: python

import base64
from langchain_core.messages import HumanMessage

audio_bytes = open("/path/to/your/audio.mp3", "rb").read()
audio_base64 = base64.b64encode(audio_bytes).decode("utf-8")

message = HumanMessage(
    content=[
        {"type": "text", "text": "summarize this audio in a sentence"},
        {
            "type": "file",
            "source_type": "base64",
            "mime_type": "audio/mp3",
            "data": audio_base64,
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content

.. code-block:: python

"In this episode of the Made by Google podcast, Stephen Johnson and Simon
Tokumine discuss NotebookLM, a tool designed to help users understand
complex material in various modalities, with a focus on its unexpected uses,
the development of audio overviews, and the implementation of new features
like mind maps and source discovery."

File upload (URI-based): You can also upload files to Google's servers and reference them by URI. This works for PDFs, images, videos, and audio files.

.. code-block:: python

    import time
    from google import genai
    from langchain_core.messages import HumanMessage

    client = genai.Client()

    myfile = client.files.upload(file="/path/to/your/sample.pdf")
    while myfile.state.name == "PROCESSING":
        time.sleep(2)
        myfile = client.files.get(name=myfile.name)

    message = HumanMessage(
        content=[
            {"type": "text", "text": "What is in the document?"},
            {
                "type": "media",
                "file_uri": myfile.uri,
                "mime_type": "application/pdf",
            },
        ]
    )
    ai_msg = llm.invoke([message])
    ai_msg.content

.. code-block:: python

    "This research paper assesses and mitigates multi-turn jailbreak
    vulnerabilities in large language models using the Crescendo attack study,
    evaluating attack success rates and mitigation strategies like prompt
    hardening and LLM-as-guardrail."
Token usage

.. code-block:: python

ai_msg = llm.invoke(messages)
ai_msg.usage_metadata

.. code-block:: python

{"input_tokens": 18, "output_tokens": 5, "total_tokens": 23}

Response metadata .. code-block:: python

    ai_msg = llm.invoke(messages)
    ai_msg.response_metadata

.. code-block:: python

    {
        "prompt_feedback": {"block_reason": 0, "safety_ratings": []},
        "finish_reason": "STOP",
        "safety_ratings": [
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
        ],
    }

Methods:

Name Description
get_name

Get the name of the Runnable.

get_input_schema

Get a pydantic model that can be used to validate input to the Runnable.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe runnables.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

get_lc_namespace

Get the namespace of the langchain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnables that can be set at runtime.

set_verbose

If verbose is None, set it.

get_token_ids

Return the ordered ids of the tokens in a text.

get_num_tokens_from_messages

Get the number of tokens in the messages.

generate

Pass a sequence of prompts to the model and return model generations.

agenerate

Asynchronously pass a sequence of prompts to a model and return generations.

dict

Return a dictionary of the LLM.

__init__

Needed for arg validation.

build_extra

Build extra kwargs from additional params that were passed in.

validate_environment

Validates params and passes them to google-generativeai package.

invoke

Enable code execution. Supported on: gemini-1.5-pro, gemini-1.5-flash,

get_num_tokens

Get the number of tokens present in the text.

bind_tools

Bind tool-like objects to this chat model.

Attributes:

Name Type Description
InputType TypeAlias

Get the input type for this runnable.

OutputType Any

Get the output type for this runnable.

input_schema type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema type[BaseModel]

Output schema.

config_specs list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_attributes dict

List of attribute names that should be included in the serialized kwargs.

cache BaseCache | bool | None

Whether to cache the response.

verbose bool

Whether to print out response text.

callbacks Callbacks

Callbacks to add to the run trace.

tags list[str] | None

Tags to add to the run trace.

metadata dict[str, Any] | None

Metadata to add to the run trace.

custom_get_token_ids Callable[[str], list[int]] | None

Optional encoder to use for counting tokens.

rate_limiter BaseRateLimiter | None

An optional rate limiter to use for limiting the number of requests.

disable_streaming bool | Literal['tool_calling']

Whether to disable streaming for this model.

output_version str | None

Version of AIMessage output format to store in message content.

model str

Model name to use.

google_api_key Optional[SecretStr]

Google AI API key.

credentials Any

The default custom credentials (google.auth.credentials.Credentials) to use

temperature float

Run inference with this temperature. Must be within [0.0, 2.0]. If unset,

top_p Optional[float]

Decode using nucleus sampling: consider the smallest set of tokens whose

top_k Optional[int]

Decode using top-k sampling: consider the set of top_k most probable tokens.

max_output_tokens Optional[int]

Maximum number of tokens to include in a candidate. Must be greater than zero.

n int

Number of chat completions to generate for each prompt. Note that the API may

max_retries int

The maximum number of retries to make when generating. If unset, will default

timeout Optional[float]

The maximum number of seconds to wait for a response.

safety_settings Optional[Dict[HarmCategory, HarmBlockThreshold]]

The default safety settings to use for all generations.

convert_system_message_to_human bool

Whether to merge any leading SystemMessage into the following HumanMessage.

response_mime_type Optional[str]

Optional. Output response mimetype of the generated candidate text. Only

response_schema Optional[Dict[str, Any]]

Optional. Enforce an schema to the output. The format of the dictionary should

cached_content Optional[str]

The name of the cached content used as context to serve the prediction.

stop Optional[List[str]]

Stop sequences for the model.

streaming Optional[bool]

Whether to stream responses from the model.

model_kwargs dict[str, Any]

Holds any unexpected initialization parameters.

InputType property

InputType: TypeAlias

Get the input type for this runnable.

OutputType property

OutputType: Any

Get the output type for this runnable.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor. Default is an empty dictionary.

cache class-attribute instance-attribute

cache: BaseCache | bool | None = Field(
    default=None, exclude=True
)

Whether to cache the response.

  • If true, will use the global cache.
  • If false, will not use a cache
  • If None, will use the global cache if it's set, otherwise no cache.
  • If instance of BaseCache, will use the provided cache.

Caching is not currently supported for streaming methods of models.

verbose class-attribute instance-attribute

verbose: bool = Field(
    default_factory=_get_verbosity, exclude=True, repr=False
)

Whether to print out response text.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to add to the run trace.

tags class-attribute instance-attribute

tags: list[str] | None = Field(default=None, exclude=True)

Tags to add to the run trace.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = Field(
    default=None, exclude=True
)

Metadata to add to the run trace.

custom_get_token_ids class-attribute instance-attribute

custom_get_token_ids: Callable[[str], list[int]] | None = (
    Field(default=None, exclude=True)
)

Optional encoder to use for counting tokens.

rate_limiter class-attribute instance-attribute

rate_limiter: BaseRateLimiter | None = Field(
    default=None, exclude=True
)

An optional rate limiter to use for limiting the number of requests.

disable_streaming class-attribute instance-attribute

disable_streaming: bool | Literal['tool_calling'] = False

Whether to disable streaming for this model.

If streaming is bypassed, then stream()/astream()/astream_events() will defer to invoke()/ainvoke().

  • If True, will always bypass streaming case.
  • If 'tool_calling', will bypass streaming case only when the model is called with a tools keyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke()) only when the tools argument is provided. This offers the best of both worlds.
  • If False (default), will always use streaming case if available.

The main reason for this flag is that code might be written using stream() and a user may want to swap out a given model for another model whose the implementation does not properly support streaming.

output_version class-attribute instance-attribute

output_version: str | None = Field(
    default_factory=from_env(
        "LC_OUTPUT_VERSION", default=None
    )
)

Version of AIMessage output format to store in message content.

AIMessage.content_blocks will lazily parse the contents of content into a standard format. This flag can be used to additionally store the standard format in message content, e.g., for serialization purposes.

Supported values:

  • "v0": provider-specific format in content (can lazily-parse with .content_blocks)
  • "v1": standardized format in content (consistent with .content_blocks)

Partner packages (e.g., langchain-openai) can also use this field to roll out new content formats in a backward-compatible way.

Added in version 1.0

model class-attribute instance-attribute

model: str = Field(
    ...,
    description="The name of the model to use.\nExamples:\n    - gemini-2.5-flash\n    - models/text-bison-001",
)

Model name to use.

google_api_key class-attribute instance-attribute

google_api_key: Optional[SecretStr] = Field(
    alias="api_key",
    default_factory=secret_from_env(
        "GOOGLE_API_KEY", default=None
    ),
)

Google AI API key. If not specified will be read from env var GOOGLE_API_KEY.

credentials class-attribute instance-attribute

credentials: Any = None

The default custom credentials (google.auth.credentials.Credentials) to use

temperature class-attribute instance-attribute

temperature: float = 0.7

Run inference with this temperature. Must be within [0.0, 2.0]. If unset, will default to 0.7.

top_p class-attribute instance-attribute

top_p: Optional[float] = None

Decode using nucleus sampling: consider the smallest set of tokens whose probability sum is at least top_p. Must be within [0.0, 1.0].

top_k class-attribute instance-attribute

top_k: Optional[int] = None

Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive.

max_output_tokens class-attribute instance-attribute

max_output_tokens: Optional[int] = Field(
    default=None, alias="max_tokens"
)

Maximum number of tokens to include in a candidate. Must be greater than zero. If unset, will use the model's default value, which varies by model. See https://ai.google.dev/gemini-api/docs/models for model-specific limits.

n class-attribute instance-attribute

n: int = 1

Number of chat completions to generate for each prompt. Note that the API may not return the full n completions if duplicates are generated.

max_retries class-attribute instance-attribute

max_retries: int = Field(default=6, alias='retries')

The maximum number of retries to make when generating. If unset, will default to 6.

timeout class-attribute instance-attribute

timeout: Optional[float] = Field(
    default=None, alias="request_timeout"
)

The maximum number of seconds to wait for a response.

safety_settings class-attribute instance-attribute

safety_settings: Optional[
    Dict[HarmCategory, HarmBlockThreshold]
] = None

The default safety settings to use for all generations.

For example:

.. code-block:: python from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory

safety_settings = {
    HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
    HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_ONLY_HIGH,
    HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
}

convert_system_message_to_human class-attribute instance-attribute

convert_system_message_to_human: bool = False

Whether to merge any leading SystemMessage into the following HumanMessage.

Gemini does not support system messages; any unsupported messages will raise an error.

response_mime_type class-attribute instance-attribute

response_mime_type: Optional[str] = None

Optional. Output response mimetype of the generated candidate text. Only supported in Gemini 1.5 and later models.

Supported mimetype
  • 'text/plain': (default) Text output.
  • 'application/json': JSON response in the candidates.
  • 'text/x.enum': Enum in plain text.

The model also needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.

response_schema class-attribute instance-attribute

response_schema: Optional[Dict[str, Any]] = None

Optional. Enforce an schema to the output. The format of the dictionary should follow Open API schema.

cached_content class-attribute instance-attribute

cached_content: Optional[str] = None

The name of the cached content used as context to serve the prediction.

Note: only used in explicit caching, where users can have control over caching (e.g. what content to cache) and enjoy guaranteed cost savings. Format: cachedContents/{cachedContent}.

stop class-attribute instance-attribute

stop: Optional[List[str]] = None

Stop sequences for the model.

streaming class-attribute instance-attribute

streaming: Optional[bool] = None

Whether to stream responses from the model.

model_kwargs class-attribute instance-attribute

model_kwargs: dict[str, Any] = Field(default_factory=dict)

Holds any unexpected initialization parameters.

get_name

get_name(
    suffix: str | None = None, *, name: str | None = None
) -> str

Get the name of the Runnable.

Parameters:

Name Type Description Default
suffix str | None

An optional suffix to append to the name.

None
name str | None

An optional name to use instead of the Runnable's name.

None

Returns:

Type Description
str

The name of the Runnable.

get_input_schema

get_input_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate input to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the Runnable is invoked with.

This method allows to get an input schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate input.

get_input_jsonschema

get_input_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate output to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(
    *, include: Sequence[str] | None = None
) -> type[BaseModel]

The type of config this Runnable accepts specified as a pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(
    *, include: Sequence[str] | None = None
) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(
    config: RunnableConfig | None = None,
) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: (
        Runnable[Any, Other]
        | Callable[[Iterator[Any]], Iterator[Other]]
        | Callable[
            [AsyncIterator[Any]], AsyncIterator[Other]
        ]
        | Callable[[Any], Other]
        | Mapping[
            str,
            Runnable[Any, Other]
            | Callable[[Any], Other]
            | Any,
        ]
    ),
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: (
        Runnable[Other, Any]
        | Callable[[Iterator[Other]], Iterator[Any]]
        | Callable[
            [AsyncIterator[Other]], AsyncIterator[Any]
        ]
        | Callable[[Other], Any]
        | Mapping[
            str,
            Runnable[Other, Any]
            | Callable[[Other], Any]
            | Any,
        ]
    ),
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other],
    name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe runnables.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]

Parameters:

Name Type Description Default
*others Runnable[Any, Other] | Callable[[Any], Other]

Other Runnable or Runnable-like objects to compose

()
name str | None

An optional name for the resulting RunnableSequence.

None

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(
    keys: str | list[str],
) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick single key:

```python
import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
```

Pick list of keys:

```python
from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(
    str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
```

Parameters:

Name Type Description Default
keys str | list[str]

A key or list of keys to pick from the output dict.

required

Returns:

Type Description
RunnableSerializable[Any, Any]

a new Runnable.

assign

assign(
    **kwargs: (
        Runnable[dict[str, Any], Any]
        | Callable[[dict[str, Any]], Any]
        | Mapping[
            str,
            Runnable[dict[str, Any], Any]
            | Callable[[dict[str, Any]], Any],
        ]
    ),
) -> RunnableSerializable[Any, Any]

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | llm | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | llm)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}

Parameters:

Name Type Description Default
**kwargs Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]]

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

{}

Returns:

Type Description
RunnableSerializable[Any, Any]

A new Runnable.

batch

batch(
    inputs: list[Input],
    config: (
        RunnableConfig | list[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> list[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters:

Name Type Description Default
inputs list[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | list[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[Input],
    config: (
        RunnableConfig | list[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> list[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters:

Name Type Description Default
inputs list[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | list[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
diff bool

Whether to yield diffs between each step or the current state.

True
with_streamed_output_list bool

Whether to yield the streamed_output list.

True
include_names Sequence[str] | None

Only include logs with these names.

None
include_types Sequence[str] | None

Only include logs with these types.

None
include_tags Sequence[str] | None

Only include logs with these tags.

None
exclude_names Sequence[str] | None

Exclude logs with these names.

None
exclude_types Sequence[str] | None

Exclude logs with these types.

None
exclude_tags Sequence[str] | None

Exclude logs with these tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: str - Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: str - The name of the Runnable that generated the event.
  • run_id: str - randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: list[str] - The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: Optional[list[str]] - The tags of the Runnable that generated the event.
  • metadata: Optional[dict[str, Any]] - The metadata of the Runnable that generated the event.
  • data: dict[str, Any]

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | event | name | chunk | input | output | +==========================+==================+=====================================+===================================================+=====================================================+ | on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_start | [model name] | | {'input': 'hello'} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_stream | [model name] | 'Hello' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_end | [model name] | | 'Hello human!' | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_start | format_docs | | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_stream | format_docs | 'hello world!, goodbye world!' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_end | format_docs | | [Document(...)] | 'hello world!, goodbye world!' | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_start | some_tool | | {"x": 1, "y": "2"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_end | some_tool | | | {"x": 1, "y": "2"} | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_start | [retriever name] | | {"query": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_start | [template_name] | | {"question": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

+-----------+------+-----------------------------------------------------------------------------------------------------------+ | Attribute | Type | Description | +===========+======+===========================================================================================================+ | name | str | A user defined name for the event. | +-----------+------+-----------------------------------------------------------------------------------------------------------+ | data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. | +-----------+------+-----------------------------------------------------------------------------------------------------------+

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
version Literal['v1', 'v2']

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

'v2'
include_names Sequence[str] | None

Only include events from Runnables with matching names.

None
include_types Sequence[str] | None

Only include events from Runnables with matching types.

None
include_tags Sequence[str] | None

Only include events from Runnables with matching tags.

None
exclude_names Sequence[str] | None

Exclude events from Runnables with matching names.

None
exclude_types Sequence[str] | None

Exclude events from Runnables with matching types.

None
exclude_tags Sequence[str] | None

Exclude events from Runnables with matching tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

{}

Yields:

Type Description
AsyncIterator[StreamEvent]

An async stream of StreamEvents.

Raises:

Type Description
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input Iterator[Input]

An iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input AsyncIterator[Input]

An async iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

Parameters:

Name Type Description Default
kwargs Any

The arguments to bind to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

llm = ChatOllama(model="llama3.1")

# Without bind.
chain = llm | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind.
chain = llm.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

The config to bind to the Runnable.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_end: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_error: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called before the Runnable starts running, with the Run object. Defaults to None.

None
on_end Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start AsyncListener | None

Called asynchronously before the Runnable starts running, with the Run object. Defaults to None.

None
on_end AsyncListener | None

Called asynchronously after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error AsyncListener | None

Called asynchronously if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *,
    input_type: type[Input] | None = None,
    output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
input_type type[Input] | None

The input type to bind to the Runnable. Defaults to None.

None
output_type type[Output] | None

The output type to bind to the Runnable. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[
        type[BaseException], ...
    ] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: (
        ExponentialJitterParams | None
    ) = None,
    stop_after_attempt: int = 3
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

Parameters:

Name Type Description Default
retry_if_exception_type tuple[type[BaseException], ...]

A tuple of exception types to retry on. Defaults to (Exception,).

(Exception,)
wait_exponential_jitter bool

Whether to add jitter to the wait time between retries. Defaults to True.

True
stop_after_attempt int

The maximum number of attempts to make before giving up. Defaults to 3.

3
exponential_jitter_params ExponentialJitterParams | None

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

Returns:

Type Description
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[
        type[BaseException], ...
    ] = (Exception,),
    exception_key: str | None = None
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle. Defaults to (Exception,).

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input. Defaults to None.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle.

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

Parameters:

Name Type Description Default
args_schema type[BaseModel] | None

The schema for the tool. Defaults to None.

None
name str | None

The name of the tool. Defaults to None.

None
description str | None

The description of the tool. Defaults to None.

None
arg_types dict[str, type] | None

A dictionary of argument names to types. Defaults to None.

None

Returns:

Type Description
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the langchain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

Returns:

Type Description
list[str]

The namespace as a list of strings.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object. For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> (
    SerializedConstructor | SerializedNotImplemented
)

Serialize the Runnable to JSON.

Returns:

Type Description
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

Returns:

Type Description
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

Parameters:

Name Type Description Default
**kwargs AnyConfigurableField

A dictionary of ConfigurableField instances to configure.

{}

Raises:

Type Description
ValueError

If a configuration key is not found in the Runnable.

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: (
        Runnable[Input, Output]
        | Callable[[], Runnable[Input, Output]]
    )
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnables that can be set at runtime.

Parameters:

Name Type Description Default
which ConfigurableField

The ConfigurableField instance that will be used to select the alternative.

required
default_key str

The default key to use if no alternative is selected. Defaults to 'default'.

'default'
prefix_keys bool

Whether to prefix the keys with the ConfigurableField id. Defaults to False.

False
**kwargs Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]

A dictionary of keys to Runnable instances or callables that return Runnable instances.

{}

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

set_verbose

set_verbose(verbose: bool | None) -> bool

If verbose is None, set it.

This allows users to pass in None as verbose to access the global setting.

Parameters:

Name Type Description Default
verbose bool | None

The verbosity setting to use.

required

Returns:

Type Description
bool

The verbosity setting to use.

get_token_ids

get_token_ids(text: str) -> list[int]

Return the ordered ids of the tokens in a text.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
list[int]

A list of ids corresponding to the tokens in the text, in order they occur

list[int]

in the text.

get_num_tokens_from_messages

get_num_tokens_from_messages(
    messages: list[BaseMessage],
    tools: Sequence | None = None,
) -> int

Get the number of tokens in the messages.

Useful for checking if an input fits in a model's context window.

Note

The base implementation of get_num_tokens_from_messages ignores tool schemas.

Parameters:

Name Type Description Default
messages list[BaseMessage]

The message inputs to tokenize.

required
tools Sequence | None

If provided, sequence of dict, BaseModel, function, or BaseTools to be converted to tool schemas.

None

Returns:

Type Description
int

The sum of the number of tokens across the messages.

generate

generate(
    messages: list[list[BaseMessage]],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    **kwargs: Any
) -> LLMResult

Pass a sequence of prompts to the model and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
messages list[list[BaseMessage]]

List of list of messages.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | None

The tags to apply.

None
metadata dict[str, Any] | None

The metadata to apply.

None
run_name str | None

The name of the run.

None
run_id UUID | None

The ID of the run.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input

LLMResult

prompt and additional model provider-specific output.

agenerate async

agenerate(
    messages: list[list[BaseMessage]],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    **kwargs: Any
) -> LLMResult

Asynchronously pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
messages list[list[BaseMessage]]

List of list of messages.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | None

The tags to apply.

None
metadata dict[str, Any] | None

The metadata to apply.

None
run_name str | None

The name of the run.

None
run_id UUID | None

The ID of the run.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input

LLMResult

prompt and additional model provider-specific output.

dict

dict(**kwargs: Any) -> dict

Return a dictionary of the LLM.

__init__

__init__(**kwargs: Any) -> None

Needed for arg validation.

build_extra classmethod

build_extra(values: dict[str, Any]) -> Any

Build extra kwargs from additional params that were passed in.

validate_environment

validate_environment() -> Self

Validates params and passes them to google-generativeai package.

invoke

invoke(
    input: LanguageModelInput,
    config: Optional[RunnableConfig] = None,
    *,
    code_execution: Optional[bool] = None,
    stop: Optional[list[str]] = None,
    **kwargs: Any
) -> BaseMessage

Enable code execution. Supported on: gemini-1.5-pro, gemini-1.5-flash, gemini-2.0-flash, and gemini-2.0-pro. When enabled, the model can execute code to solve problems.

get_num_tokens

get_num_tokens(text: str) -> int

Get the number of tokens present in the text.

Useful for checking if an input will fit in a model's context window.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
int

The integer number of tokens in the text.

bind_tools

bind_tools(
    tools: Sequence[
        dict[str, Any]
        | type
        | Callable[..., Any]
        | BaseTool
        | Tool
    ],
    tool_config: Optional[
        Union[Dict, _ToolConfigDict]
    ] = None,
    *,
    tool_choice: Optional[
        Union[_ToolChoiceType, bool]
    ] = None,
    **kwargs: Any
) -> Runnable[LanguageModelInput, BaseMessage]

Bind tool-like objects to this chat model.

Assumes model is compatible with google-generativeAI tool-calling API.

Parameters:

Name Type Description Default
tools Sequence[dict[str, Any] | type | Callable[..., Any] | BaseTool | Tool]

A list of tool definitions to bind to this chat model. Can be a pydantic model, callable, or BaseTool. Pydantic models, callables, and BaseTools will be automatically converted to their schema dictionary representation. Tools with Union types in their arguments are now supported and converted to anyOf schemas.

required
**kwargs Any

Any additional parameters to pass to the :class:~langchain.runnable.Runnable constructor.

{}

GoogleGenerativeAIEmbeddings

Bases: BaseModel, Embeddings

Google Generative AI Embeddings.

To use, you must have either:

1. The ``GOOGLE_API_KEY`` environment variable set with your API key, or
2. Pass your API key using the google_api_key kwarg to the
GoogleGenerativeAIEmbeddings constructor.
Example

.. code-block:: python

from langchain_google_genai import GoogleGenerativeAIEmbeddings

embeddings = GoogleGenerativeAIEmbeddings(model="gemini-embedding-001")
embeddings.embed_query("What's our Q1 revenue?")

Methods:

Name Description
validate_environment

Validates params and passes them to google-generativeai package.

embed_documents

Embed a list of strings using the batch endpoint <https://ai.google.dev/api/embeddings#method:-models.batchembedcontents>__.

embed_query

Embed a text, using the non-batch endpoint <https://ai.google.dev/api/embeddings#method:-models.embedcontent>__.

aembed_documents

Embed a list of strings using the batch endpoint <https://ai.google.dev/api/embeddings#method:-models.batchembedcontents>__.

aembed_query

Embed a text, using the non-batch endpoint <https://ai.google.dev/api/embeddings#method:-models.embedcontent>__.

validate_environment

validate_environment() -> Self

Validates params and passes them to google-generativeai package.

embed_documents

embed_documents(
    texts: List[str],
    *,
    batch_size: int = _DEFAULT_BATCH_SIZE,
    task_type: Optional[str] = None,
    titles: Optional[List[str]] = None,
    output_dimensionality: Optional[int] = None
) -> List[List[float]]

Embed a list of strings using the batch endpoint <https://ai.google.dev/api/embeddings#method:-models.batchembedcontents>__.

Google Generative AI currently sets a max batch size of 100 strings.

Parameters:

Name Type Description Default
texts List[str]

List[str] The list of strings to embed.

required
batch_size int

[int] The batch size of embeddings to send to the model

_DEFAULT_BATCH_SIZE
task_type Optional[str]

task_type <https://ai.google.dev/api/embeddings#tasktype>__

None
titles Optional[List[str]]

An optional list of titles for texts provided. Only applicable when TaskType is 'RETRIEVAL_DOCUMENT'.

None
output_dimensionality Optional[int]

Optional reduced dimension for the output embedding <https://ai.google.dev/api/embeddings#EmbedContentRequest>__.

None

Returns:

Type Description
List[List[float]]

List of embeddings, one for each text.

embed_query

embed_query(
    text: str,
    *,
    task_type: Optional[str] = None,
    title: Optional[str] = None,
    output_dimensionality: Optional[int] = None
) -> List[float]

Embed a text, using the non-batch endpoint <https://ai.google.dev/api/embeddings#method:-models.embedcontent>__.

Parameters:

Name Type Description Default
text str

The text to embed.

required
task_type Optional[str]

task_type <https://ai.google.dev/api/embeddings#tasktype>__

None
title Optional[str]

An optional title for the text. Only applicable when TaskType is 'RETRIEVAL_DOCUMENT'.

None
output_dimensionality Optional[int]

Optional reduced dimension for the output embedding <https://ai.google.dev/api/embeddings#EmbedContentRequest>__.

None

Returns:

Type Description
List[float]

Embedding for the text.

aembed_documents async

aembed_documents(
    texts: List[str],
    *,
    batch_size: int = _DEFAULT_BATCH_SIZE,
    task_type: Optional[str] = None,
    titles: Optional[List[str]] = None,
    output_dimensionality: Optional[int] = None
) -> List[List[float]]

Embed a list of strings using the batch endpoint <https://ai.google.dev/api/embeddings#method:-models.batchembedcontents>__.

Google Generative AI currently sets a max batch size of 100 strings.

Parameters:

Name Type Description Default
texts List[str]

List[str] The list of strings to embed.

required
batch_size int

[int] The batch size of embeddings to send to the model

_DEFAULT_BATCH_SIZE
task_type Optional[str]

task_type <https://ai.google.dev/api/embeddings#tasktype>__

None
titles Optional[List[str]]

An optional list of titles for texts provided. Only applicable when TaskType is 'RETRIEVAL_DOCUMENT'.

None
output_dimensionality Optional[int]

Optional reduced dimension for the output embedding <https://ai.google.dev/api/embeddings#EmbedContentRequest>__.

None

Returns:

Type Description
List[List[float]]

List of embeddings, one for each text.

aembed_query async

aembed_query(
    text: str,
    *,
    task_type: Optional[str] = None,
    title: Optional[str] = None,
    output_dimensionality: Optional[int] = None
) -> List[float]

Embed a text, using the non-batch endpoint <https://ai.google.dev/api/embeddings#method:-models.embedcontent>__.

Parameters:

Name Type Description Default
text str

The text to embed.

required
task_type Optional[str]

task_type <https://ai.google.dev/api/embeddings#tasktype>__

None
title Optional[str]

An optional title for the text. Only applicable when TaskType is 'RETRIEVAL_DOCUMENT'.

None
output_dimensionality Optional[int]

Optional reduced dimension for the output embedding <https://ai.google.dev/api/embeddings#EmbedContentRequest>__.

None

Returns:

Type Description
List[float]

Embedding for the text.

AqaInput

Bases: BaseModel

Input to GenAIAqa.invoke.

Attributes:

Name Type Description
prompt str

The user's inquiry.

source_passages List[str]

A list of passage that the LLM should use only to answer the user's inquiry.

AqaOutput

Bases: BaseModel

Output from GenAIAqa.invoke.

Attributes:

Name Type Description
answer str

The answer to the user's inquiry.

attributed_passages List[str]

A list of passages that the LLM used to construct the answer.

answerable_probability float

The probability of the question being answered from the provided passages.

GenAIAqa

Bases: RunnableSerializable[AqaInput, AqaOutput]

Google's Attributed Question and Answering service.

Given a user's query and a list of passages, Google's server will return a response that is grounded to the provided list of passages. It will not base the response on parametric memory.

Attributes:

Name Type Description
answer_style int

keyword-only argument. See google.ai.generativelanguage.AnswerStyle for details.

Methods:

Name Description
get_name

Get the name of the Runnable.

get_input_schema

Get a pydantic model that can be used to validate input to the Runnable.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe runnables.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

ainvoke

Transform a single input into an output.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

stream

Default implementation of stream, which calls invoke.

astream

Default implementation of astream, which calls ainvoke.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

is_lc_serializable

Is this class serializable?

get_lc_namespace

Get the namespace of the langchain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnables that can be set at runtime.

__init__

Construct a Google Generative AI AQA model.

invoke

Generates a grounded response using the provided passages.

InputType property

InputType: type[Input]

Input type.

The type of input this Runnable accepts specified as a type annotation.

Raises:

Type Description
TypeError

If the input type cannot be inferred.

OutputType property

OutputType: type[Output]

Output Type.

The type of output this Runnable produces specified as a type annotation.

Raises:

Type Description
TypeError

If the output type cannot be inferred.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_secrets property

lc_secrets: dict[str, str]

A map of constructor argument names to secret ids.

For example,

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor. Default is an empty dictionary.

get_name

get_name(
    suffix: str | None = None, *, name: str | None = None
) -> str

Get the name of the Runnable.

Parameters:

Name Type Description Default
suffix str | None

An optional suffix to append to the name.

None
name str | None

An optional name to use instead of the Runnable's name.

None

Returns:

Type Description
str

The name of the Runnable.

get_input_schema

get_input_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate input to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the Runnable is invoked with.

This method allows to get an input schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate input.

get_input_jsonschema

get_input_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate output to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(
    *, include: Sequence[str] | None = None
) -> type[BaseModel]

The type of config this Runnable accepts specified as a pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(
    *, include: Sequence[str] | None = None
) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(
    config: RunnableConfig | None = None,
) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: (
        Runnable[Any, Other]
        | Callable[[Iterator[Any]], Iterator[Other]]
        | Callable[
            [AsyncIterator[Any]], AsyncIterator[Other]
        ]
        | Callable[[Any], Other]
        | Mapping[
            str,
            Runnable[Any, Other]
            | Callable[[Any], Other]
            | Any,
        ]
    ),
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: (
        Runnable[Other, Any]
        | Callable[[Iterator[Other]], Iterator[Any]]
        | Callable[
            [AsyncIterator[Other]], AsyncIterator[Any]
        ]
        | Callable[[Other], Any]
        | Mapping[
            str,
            Runnable[Other, Any]
            | Callable[[Other], Any]
            | Any,
        ]
    ),
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other],
    name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe runnables.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]

Parameters:

Name Type Description Default
*others Runnable[Any, Other] | Callable[[Any], Other]

Other Runnable or Runnable-like objects to compose

()
name str | None

An optional name for the resulting RunnableSequence.

None

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(
    keys: str | list[str],
) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick single key:

```python
import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
```

Pick list of keys:

```python
from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(
    str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
```

Parameters:

Name Type Description Default
keys str | list[str]

A key or list of keys to pick from the output dict.

required

Returns:

Type Description
RunnableSerializable[Any, Any]

a new Runnable.

assign

assign(
    **kwargs: (
        Runnable[dict[str, Any], Any]
        | Callable[[dict[str, Any]], Any]
        | Mapping[
            str,
            Runnable[dict[str, Any], Any]
            | Callable[[dict[str, Any]], Any],
        ]
    ),
) -> RunnableSerializable[Any, Any]

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | llm | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | llm)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}

Parameters:

Name Type Description Default
**kwargs Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]]

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

{}

Returns:

Type Description
RunnableSerializable[Any, Any]

A new Runnable.

ainvoke async

ainvoke(
    input: Input,
    config: RunnableConfig | None = None,
    **kwargs: Any
) -> Output

Transform a single input into an output.

Parameters:

Name Type Description Default
input Input

The input to the Runnable.

required
config RunnableConfig | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None

Returns:

Type Description
Output

The output of the Runnable.

batch

batch(
    inputs: list[Input],
    config: (
        RunnableConfig | list[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> list[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters:

Name Type Description Default
inputs list[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | list[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[Input],
    config: (
        RunnableConfig | list[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> list[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters:

Name Type Description Default
inputs list[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | list[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

stream

stream(
    input: Input,
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> Iterator[Output]

Default implementation of stream, which calls invoke.

Subclasses should override this method if they support streaming output.

Parameters:

Name Type Description Default
input Input

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
Output

The output of the Runnable.

astream async

astream(
    input: Input,
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> AsyncIterator[Output]

Default implementation of astream, which calls ainvoke.

Subclasses should override this method if they support streaming output.

Parameters:

Name Type Description Default
input Input

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[Output]

The output of the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
diff bool

Whether to yield diffs between each step or the current state.

True
with_streamed_output_list bool

Whether to yield the streamed_output list.

True
include_names Sequence[str] | None

Only include logs with these names.

None
include_types Sequence[str] | None

Only include logs with these types.

None
include_tags Sequence[str] | None

Only include logs with these tags.

None
exclude_names Sequence[str] | None

Exclude logs with these names.

None
exclude_types Sequence[str] | None

Exclude logs with these types.

None
exclude_tags Sequence[str] | None

Exclude logs with these tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: str - Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: str - The name of the Runnable that generated the event.
  • run_id: str - randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: list[str] - The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: Optional[list[str]] - The tags of the Runnable that generated the event.
  • metadata: Optional[dict[str, Any]] - The metadata of the Runnable that generated the event.
  • data: dict[str, Any]

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | event | name | chunk | input | output | +==========================+==================+=====================================+===================================================+=====================================================+ | on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_start | [model name] | | {'input': 'hello'} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_stream | [model name] | 'Hello' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_end | [model name] | | 'Hello human!' | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_start | format_docs | | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_stream | format_docs | 'hello world!, goodbye world!' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_end | format_docs | | [Document(...)] | 'hello world!, goodbye world!' | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_start | some_tool | | {"x": 1, "y": "2"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_end | some_tool | | | {"x": 1, "y": "2"} | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_start | [retriever name] | | {"query": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_start | [template_name] | | {"question": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

+-----------+------+-----------------------------------------------------------------------------------------------------------+ | Attribute | Type | Description | +===========+======+===========================================================================================================+ | name | str | A user defined name for the event. | +-----------+------+-----------------------------------------------------------------------------------------------------------+ | data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. | +-----------+------+-----------------------------------------------------------------------------------------------------------+

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
version Literal['v1', 'v2']

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

'v2'
include_names Sequence[str] | None

Only include events from Runnables with matching names.

None
include_types Sequence[str] | None

Only include events from Runnables with matching types.

None
include_tags Sequence[str] | None

Only include events from Runnables with matching tags.

None
exclude_names Sequence[str] | None

Exclude events from Runnables with matching names.

None
exclude_types Sequence[str] | None

Exclude events from Runnables with matching types.

None
exclude_tags Sequence[str] | None

Exclude events from Runnables with matching tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

{}

Yields:

Type Description
AsyncIterator[StreamEvent]

An async stream of StreamEvents.

Raises:

Type Description
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input Iterator[Input]

An iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input AsyncIterator[Input]

An async iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

Parameters:

Name Type Description Default
kwargs Any

The arguments to bind to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

llm = ChatOllama(model="llama3.1")

# Without bind.
chain = llm | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind.
chain = llm.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

The config to bind to the Runnable.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_end: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_error: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called before the Runnable starts running, with the Run object. Defaults to None.

None
on_end Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start AsyncListener | None

Called asynchronously before the Runnable starts running, with the Run object. Defaults to None.

None
on_end AsyncListener | None

Called asynchronously after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error AsyncListener | None

Called asynchronously if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *,
    input_type: type[Input] | None = None,
    output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
input_type type[Input] | None

The input type to bind to the Runnable. Defaults to None.

None
output_type type[Output] | None

The output type to bind to the Runnable. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[
        type[BaseException], ...
    ] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: (
        ExponentialJitterParams | None
    ) = None,
    stop_after_attempt: int = 3
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

Parameters:

Name Type Description Default
retry_if_exception_type tuple[type[BaseException], ...]

A tuple of exception types to retry on. Defaults to (Exception,).

(Exception,)
wait_exponential_jitter bool

Whether to add jitter to the wait time between retries. Defaults to True.

True
stop_after_attempt int

The maximum number of attempts to make before giving up. Defaults to 3.

3
exponential_jitter_params ExponentialJitterParams | None

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

Returns:

Type Description
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[
        type[BaseException], ...
    ] = (Exception,),
    exception_key: str | None = None
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle. Defaults to (Exception,).

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input. Defaults to None.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle.

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

Parameters:

Name Type Description Default
args_schema type[BaseModel] | None

The schema for the tool. Defaults to None.

None
name str | None

The name of the tool. Defaults to None.

None
description str | None

The description of the tool. Defaults to None.

None
arg_types dict[str, type] | None

A dictionary of argument names to types. Defaults to None.

None

Returns:

Type Description
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

Returns:

Type Description
bool

Whether the class is serializable. Default is False.

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the langchain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

Returns:

Type Description
list[str]

The namespace as a list of strings.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object. For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> (
    SerializedConstructor | SerializedNotImplemented
)

Serialize the Runnable to JSON.

Returns:

Type Description
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

Returns:

Type Description
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

Parameters:

Name Type Description Default
**kwargs AnyConfigurableField

A dictionary of ConfigurableField instances to configure.

{}

Raises:

Type Description
ValueError

If a configuration key is not found in the Runnable.

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: (
        Runnable[Input, Output]
        | Callable[[], Runnable[Input, Output]]
    )
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnables that can be set at runtime.

Parameters:

Name Type Description Default
which ConfigurableField

The ConfigurableField instance that will be used to select the alternative.

required
default_key str

The default key to use if no alternative is selected. Defaults to 'default'.

'default'
prefix_keys bool

Whether to prefix the keys with the ConfigurableField id. Defaults to False.

False
**kwargs Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]

A dictionary of keys to Runnable instances or callables that return Runnable instances.

{}

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

__init__

__init__(**kwargs: Any) -> None

Construct a Google Generative AI AQA model.

All arguments are optional.

Parameters:

Name Type Description Default
answer_style

See google.ai.generativelanguage.GenerateAnswerRequest.AnswerStyle.

required
safety_settings

See google.ai.generativelanguage.SafetySetting.

required
temperature

0.0 to 1.0.

required

invoke

invoke(
    input: AqaInput,
    config: Optional[RunnableConfig] = None,
    **kwargs: Any
) -> AqaOutput

Generates a grounded response using the provided passages.

GoogleVectorStore

Bases: VectorStore

Google GenerativeAI Vector Store.

Currently, it computes the embedding vectors on the server side.

Example: Add texts to an existing corpus.

store = GoogleVectorStore(corpus_id="123")
store.add_documents(documents, document_id="456")

Example: Create a new corpus.

store = GoogleVectorStore.create_corpus(
    corpus_id="123", display_name="My Google corpus")

Example: Query the corpus for relevant passages.

store.as_retriever()             .get_relevant_documents("Who caught the gingerbread man?")

Example: Ask the corpus for grounded responses!

aqa = store.as_aqa()
response = aqa.invoke("Who caught the gingerbread man?")
print(response.answer)
print(response.attributed_passages)
print(response.answerability_probability)

You can also operate at Google's Document level.

Example: Add texts to an existing Google Vector Store Document.

doc_store = GoogleVectorStore(corpus_id="123", document_id="456")
doc_store.add_documents(documents)

Example: Create a new Google Vector Store Document.

doc_store = GoogleVectorStore.create_document(
    corpus_id="123", document_id="456", display_name="My Google document")

Example: Query the Google document.

doc_store.as_retriever()             .get_relevant_documents("Who caught the gingerbread man?")

For more details, see the class's methods.

Methods:

Name Description
get_by_ids

Get documents by their IDs.

aget_by_ids

Async get documents by their IDs.

aadd_texts

Async run more texts through the embeddings and add to the vectorstore.

add_documents

Add or update documents in the vectorstore.

aadd_documents

Async run more documents through the embeddings and add to the vectorstore.

search

Return docs most similar to query using a specified search type.

asearch

Async return docs most similar to query using a specified search type.

asimilarity_search_with_score

Async run similarity search with distance.

similarity_search_with_relevance_scores

Return docs and relevance scores in the range [0, 1].

asimilarity_search_with_relevance_scores

Async return docs and relevance scores in the range [0, 1].

asimilarity_search

Async return docs most similar to query.

similarity_search_by_vector

Return docs most similar to embedding vector.

asimilarity_search_by_vector

Async return docs most similar to embedding vector.

max_marginal_relevance_search

Return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search

Async return docs selected using the maximal marginal relevance.

max_marginal_relevance_search_by_vector

Return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search_by_vector

Async return docs selected using the maximal marginal relevance.

from_documents

Return VectorStore initialized from documents and embeddings.

afrom_documents

Async return VectorStore initialized from documents and embeddings.

afrom_texts

Async return VectorStore initialized from texts and embeddings.

as_retriever

Return VectorStoreRetriever initialized from this VectorStore.

__init__

Returns an existing Google Semantic Retriever corpus or document.

create_corpus

Create a Google Semantic Retriever corpus.

create_document

Create a Google Semantic Retriever document.

from_texts

Returns a vector store of an existing document with the specified text.

add_texts

Add texts to the vector store.

similarity_search

Search the vector store for relevant texts.

similarity_search_with_score

Run similarity search with distance.

delete

Delete chunks.

adelete

Delete chunks asynchronously.

as_aqa

Construct a Google Generative AI AQA engine.

Attributes:

Name Type Description
embeddings Embeddings | None

Access the query embedding object if available.

name str

Returns the name of the Google entity.

corpus_id str

Returns the corpus ID managed by this vector store.

document_id Optional[str]

Returns the document ID managed by this vector store.

embeddings property

embeddings: Embeddings | None

Access the query embedding object if available.

name property

name: str

Returns the name of the Google entity.

You shouldn't need to care about this unless you want to access your corpus or document via Google Generative AI API.

corpus_id property

corpus_id: str

Returns the corpus ID managed by this vector store.

document_id property

document_id: Optional[str]

Returns the document ID managed by this vector store.

get_by_ids

get_by_ids(ids: Sequence[str]) -> list[Document]

Get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters:

Name Type Description Default
ids Sequence[str]

List of ids to retrieve.

required

Returns:

Type Description
list[Document]

List of Documents.

Added in version 0.2.11

aget_by_ids async

aget_by_ids(ids: Sequence[str]) -> list[Document]

Async get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters:

Name Type Description Default
ids Sequence[str]

List of ids to retrieve.

required

Returns:

Type Description
list[Document]

List of Documents.

Added in version 0.2.11

aadd_texts async

aadd_texts(
    texts: Iterable[str],
    metadatas: list[dict] | None = None,
    *,
    ids: list[str] | None = None,
    **kwargs: Any
) -> list[str]

Async run more texts through the embeddings and add to the vectorstore.

Parameters:

Name Type Description Default
texts Iterable[str]

Iterable of strings to add to the vectorstore.

required
metadatas list[dict] | None

Optional list of metadatas associated with the texts. Default is None.

None
ids list[str] | None

Optional list

None
**kwargs Any

vectorstore specific parameters.

{}

Returns:

Type Description
list[str]

List of ids from adding the texts into the vectorstore.

Raises:

Type Description
ValueError

If the number of metadatas does not match the number of texts.

ValueError

If the number of ids does not match the number of texts.

add_documents

add_documents(
    documents: list[Document], **kwargs: Any
) -> list[str]

Add or update documents in the vectorstore.

Parameters:

Name Type Description Default
documents list[Document]

Documents to add to the vectorstore.

required
kwargs Any

Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.

{}

Returns:

Type Description
list[str]

List of IDs of the added texts.

aadd_documents async

aadd_documents(
    documents: list[Document], **kwargs: Any
) -> list[str]

Async run more documents through the embeddings and add to the vectorstore.

Parameters:

Name Type Description Default
documents list[Document]

Documents to add to the vectorstore.

required
kwargs Any

Additional keyword arguments.

{}

Returns:

Type Description
list[str]

List of IDs of the added texts.

search

search(
    query: str, search_type: str, **kwargs: Any
) -> list[Document]

Return docs most similar to query using a specified search type.

Parameters:

Name Type Description Default
query str

Input text

required
search_type str

Type of search to perform. Can be "similarity", "mmr", or "similarity_score_threshold".

required
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[Document]

List of Documents most similar to the query.

Raises:

Type Description
ValueError

If search_type is not one of "similarity", "mmr", or "similarity_score_threshold".

asearch async

asearch(
    query: str, search_type: str, **kwargs: Any
) -> list[Document]

Async return docs most similar to query using a specified search type.

Parameters:

Name Type Description Default
query str

Input text.

required
search_type str

Type of search to perform. Can be "similarity", "mmr", or "similarity_score_threshold".

required
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[Document]

List of Documents most similar to the query.

Raises:

Type Description
ValueError

If search_type is not one of "similarity", "mmr", or "similarity_score_threshold".

asimilarity_search_with_score async

asimilarity_search_with_score(
    *args: Any, **kwargs: Any
) -> list[tuple[Document, float]]

Async run similarity search with distance.

Parameters:

Name Type Description Default
*args Any

Arguments to pass to the search method.

()
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[tuple[Document, float]]

List of Tuples of (doc, similarity_score).

similarity_search_with_relevance_scores

similarity_search_with_relevance_scores(
    query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]

Return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters:

Name Type Description Default
query str

Input text.

required
k int

Number of Documents to return. Defaults to 4.

4
**kwargs Any

kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs.

{}

Returns:

Type Description
list[tuple[Document, float]]

List of Tuples of (doc, similarity_score).

asimilarity_search_with_relevance_scores async

asimilarity_search_with_relevance_scores(
    query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]

Async return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters:

Name Type Description Default
query str

Input text.

required
k int

Number of Documents to return. Defaults to 4.

4
**kwargs Any

kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs

{}

Returns:

Type Description
list[tuple[Document, float]]

List of Tuples of (doc, similarity_score)

asimilarity_search(
    query: str, k: int = 4, **kwargs: Any
) -> list[Document]

Async return docs most similar to query.

Parameters:

Name Type Description Default
query str

Input text.

required
k int

Number of Documents to return. Defaults to 4.

4
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[Document]

List of Documents most similar to the query.

similarity_search_by_vector

similarity_search_by_vector(
    embedding: list[float], k: int = 4, **kwargs: Any
) -> list[Document]

Return docs most similar to embedding vector.

Parameters:

Name Type Description Default
embedding list[float]

Embedding to look up documents similar to.

required
k int

Number of Documents to return. Defaults to 4.

4
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[Document]

List of Documents most similar to the query vector.

asimilarity_search_by_vector async

asimilarity_search_by_vector(
    embedding: list[float], k: int = 4, **kwargs: Any
) -> list[Document]

Async return docs most similar to embedding vector.

Parameters:

Name Type Description Default
embedding list[float]

Embedding to look up documents similar to.

required
k int

Number of Documents to return. Defaults to 4.

4
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[Document]

List of Documents most similar to the query vector.

max_marginal_relevance_search(
    query: str,
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    **kwargs: Any
) -> list[Document]

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters:

Name Type Description Default
query str

Text to look up documents similar to.

required
k int

Number of Documents to return. Defaults to 4.

4
fetch_k int

Number of Documents to fetch to pass to MMR algorithm. Default is 20.

20
lambda_mult float

Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

0.5
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[Document]

List of Documents selected by maximal marginal relevance.

amax_marginal_relevance_search(
    query: str,
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    **kwargs: Any
) -> list[Document]

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters:

Name Type Description Default
query str

Text to look up documents similar to.

required
k int

Number of Documents to return. Defaults to 4.

4
fetch_k int

Number of Documents to fetch to pass to MMR algorithm. Default is 20.

20
lambda_mult float

Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

0.5
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[Document]

List of Documents selected by maximal marginal relevance.

max_marginal_relevance_search_by_vector

max_marginal_relevance_search_by_vector(
    embedding: list[float],
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    **kwargs: Any
) -> list[Document]

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters:

Name Type Description Default
embedding list[float]

Embedding to look up documents similar to.

required
k int

Number of Documents to return. Defaults to 4.

4
fetch_k int

Number of Documents to fetch to pass to MMR algorithm. Default is 20.

20
lambda_mult float

Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

0.5
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[Document]

List of Documents selected by maximal marginal relevance.

amax_marginal_relevance_search_by_vector async

amax_marginal_relevance_search_by_vector(
    embedding: list[float],
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    **kwargs: Any
) -> list[Document]

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters:

Name Type Description Default
embedding list[float]

Embedding to look up documents similar to.

required
k int

Number of Documents to return. Defaults to 4.

4
fetch_k int

Number of Documents to fetch to pass to MMR algorithm. Default is 20.

20
lambda_mult float

Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

0.5
**kwargs Any

Arguments to pass to the search method.

{}

Returns:

Type Description
list[Document]

List of Documents selected by maximal marginal relevance.

from_documents classmethod

from_documents(
    documents: list[Document],
    embedding: Embeddings,
    **kwargs: Any
) -> Self

Return VectorStore initialized from documents and embeddings.

Parameters:

Name Type Description Default
documents list[Document]

List of Documents to add to the vectorstore.

required
embedding Embeddings

Embedding function to use.

required
kwargs Any

Additional keyword arguments.

{}

Returns:

Name Type Description
VectorStore Self

VectorStore initialized from documents and embeddings.

afrom_documents async classmethod

afrom_documents(
    documents: list[Document],
    embedding: Embeddings,
    **kwargs: Any
) -> Self

Async return VectorStore initialized from documents and embeddings.

Parameters:

Name Type Description Default
documents list[Document]

List of Documents to add to the vectorstore.

required
embedding Embeddings

Embedding function to use.

required
kwargs Any

Additional keyword arguments.

{}

Returns:

Name Type Description
VectorStore Self

VectorStore initialized from documents and embeddings.

afrom_texts async classmethod

afrom_texts(
    texts: list[str],
    embedding: Embeddings,
    metadatas: list[dict] | None = None,
    *,
    ids: list[str] | None = None,
    **kwargs: Any
) -> Self

Async return VectorStore initialized from texts and embeddings.

Parameters:

Name Type Description Default
texts list[str]

Texts to add to the vectorstore.

required
embedding Embeddings

Embedding function to use.

required
metadatas list[dict] | None

Optional list of metadatas associated with the texts. Default is None.

None
ids list[str] | None

Optional list of IDs associated with the texts.

None
kwargs Any

Additional keyword arguments.

{}

Returns:

Name Type Description
VectorStore Self

VectorStore initialized from texts and embeddings.

as_retriever

as_retriever(**kwargs: Any) -> VectorStoreRetriever

Return VectorStoreRetriever initialized from this VectorStore.

Parameters:

Name Type Description Default
**kwargs Any

Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that the Retriever should perform. Can be "similarity" (default), "mmr", or "similarity_score_threshold". search_kwargs (Optional[Dict]): Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata

{}

Returns:

Name Type Description
VectorStoreRetriever VectorStoreRetriever

Retriever class for VectorStore.

Examples:

.. code-block:: python

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr", search_kwargs={"k": 6, "lambda_mult": 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr", search_kwargs={"k": 5, "fetch_k": 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={"score_threshold": 0.8},
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={"k": 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={"filter": {"paper_title": "GPT-4 Technical Report"}}
)

__init__

__init__(
    *,
    corpus_id: str,
    document_id: Optional[str] = None,
    **kwargs: Any
) -> None

Returns an existing Google Semantic Retriever corpus or document.

If just the corpus ID is provided, the vector store operates over all documents within that corpus.

If the document ID is provided, the vector store operates over just that document.

create_corpus classmethod

create_corpus(
    corpus_id: Optional[str] = None,
    display_name: Optional[str] = None,
) -> GoogleVectorStore

Create a Google Semantic Retriever corpus.

Parameters:

Name Type Description Default
corpus_id Optional[str]

The ID to use to create the new corpus. If not provided, Google server will provide one.

None
display_name Optional[str]

The title of the new corpus. If not provided, Google server will provide one.

None

Returns:

Type Description
GoogleVectorStore

An instance of vector store that points to the newly created corpus.

create_document classmethod

create_document(
    corpus_id: str,
    document_id: Optional[str] = None,
    display_name: Optional[str] = None,
    metadata: Optional[Dict[str, Any]] = None,
) -> GoogleVectorStore

Create a Google Semantic Retriever document.

Parameters:

Name Type Description Default
corpus_id str

ID of an existing corpus.

required
document_id Optional[str]

The ID to use to create the new Google Semantic Retriever document. If not provided, Google server will provide one.

None
display_name Optional[str]

The title of the new document. If not provided, Google server will provide one.

None

Returns:

Type Description
GoogleVectorStore

An instance of vector store that points to the newly created

GoogleVectorStore

document.

from_texts classmethod

from_texts(
    texts: List[str],
    embedding: Optional[Embeddings] = None,
    metadatas: Optional[List[dict[str, Any]]] = None,
    *,
    corpus_id: Optional[str] = None,
    document_id: Optional[str] = None,
    **kwargs: Any
) -> GoogleVectorStore

Returns a vector store of an existing document with the specified text.

Parameters:

Name Type Description Default
corpus_id Optional[str]

REQUIRED. Must be an existing corpus.

None
document_id Optional[str]

REQUIRED. Must be an existing document.

None
texts List[str]

Texts to be loaded into the vector store.

required

Returns:

Type Description
GoogleVectorStore

A vector store pointing to the specified Google Semantic Retriever

GoogleVectorStore

Document.

add_texts

add_texts(
    texts: Iterable[str],
    metadatas: Optional[List[Dict[str, Any]]] = None,
    *,
    document_id: Optional[str] = None,
    **kwargs: Any
) -> List[str]

Add texts to the vector store.

If the vector store points to a corpus (instead of a document), you must also provide a document_id.

Returns:

Type Description
List[str]

Chunk's names created on Google servers.

similarity_search(
    query: str,
    k: int = 4,
    filter: Optional[Dict[str, Any]] = None,
    **kwargs: Any
) -> List[Document]

Search the vector store for relevant texts.

similarity_search_with_score

similarity_search_with_score(
    query: str,
    k: int = 4,
    filter: Optional[Dict[str, Any]] = None,
    **kwargs: Any
) -> List[Tuple[Document, float]]

Run similarity search with distance.

delete

delete(
    ids: Optional[List[str]] = None, **kwargs: Any
) -> Optional[bool]

Delete chunks.

Note that the "ids" are not corpus ID or document ID. Rather, these are the entity names returned by add_texts.

Returns:

Type Description
Optional[bool]

True if successful. Otherwise, you should get an exception anyway.

adelete async

adelete(
    ids: Optional[List[str]] = None, **kwargs: Any
) -> Optional[bool]

Delete chunks asynchronously.

Note that the "ids" are not corpus ID or document ID. Rather, these are the entity names returned by add_texts.

Returns:

Type Description
Optional[bool]

True if successful. Otherwise, you should get an exception anyway.

as_aqa

as_aqa(**kwargs: Any) -> Runnable[str, AqaOutput]

Construct a Google Generative AI AQA engine.

All arguments are optional.

Parameters:

Name Type Description Default
answer_style

See google.ai.generativelanguage.GenerateAnswerRequest.AnswerStyle.

required
safety_settings

See google.ai.generativelanguage.SafetySetting.

required
temperature

0.0 to 1.0.

required

GoogleGenerativeAI

Bases: _BaseGoogleGenerativeAI, BaseLLM

Google GenerativeAI models.

Example

.. code-block:: python

from langchain_google_genai import GoogleGenerativeAI

llm = GoogleGenerativeAI(model="gemini-2.5-pro")

Methods:

Name Description
get_name

Get the name of the Runnable.

get_input_schema

Get a pydantic model that can be used to validate input to the Runnable.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe runnables.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

is_lc_serializable

Is this class serializable?

get_lc_namespace

Get the namespace of the langchain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnables that can be set at runtime.

set_verbose

If verbose is None, set it.

with_structured_output

Not implemented on this class.

get_token_ids

Return the ordered ids of the tokens in a text.

get_num_tokens_from_messages

Get the number of tokens in the messages.

generate

Pass a sequence of prompts to a model and return generations.

agenerate

Asynchronously pass a sequence of prompts to a model and return generations.

__str__

Return a string representation of the object for printing.

dict

Return a dictionary of the LLM.

save

Save the LLM.

__init__

Needed for arg validation.

validate_environment

Validates params and passes them to google-generativeai package.

get_num_tokens

Get the number of tokens present in the text.

Attributes:

Name Type Description
InputType TypeAlias

Get the input type for this runnable.

OutputType type[str]

Get the input type for this runnable.

input_schema type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema type[BaseModel]

Output schema.

config_specs list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_attributes dict

List of attribute names that should be included in the serialized kwargs.

cache BaseCache | bool | None

Whether to cache the response.

verbose bool

Whether to print out response text.

callbacks Callbacks

Callbacks to add to the run trace.

tags list[str] | None

Tags to add to the run trace.

metadata dict[str, Any] | None

Metadata to add to the run trace.

custom_get_token_ids Callable[[str], list[int]] | None

Optional encoder to use for counting tokens.

model str

Model name to use.

google_api_key Optional[SecretStr]

Google AI API key.

credentials Any

The default custom credentials (google.auth.credentials.Credentials) to use

temperature float

Run inference with this temperature. Must be within [0.0, 2.0]. If unset,

top_p Optional[float]

Decode using nucleus sampling: consider the smallest set of tokens whose

top_k Optional[int]

Decode using top-k sampling: consider the set of top_k most probable tokens.

max_output_tokens Optional[int]

Maximum number of tokens to include in a candidate. Must be greater than zero.

n int

Number of chat completions to generate for each prompt. Note that the API may

max_retries int

The maximum number of retries to make when generating. If unset, will default

timeout Optional[float]

The maximum number of seconds to wait for a response.

safety_settings Optional[Dict[HarmCategory, HarmBlockThreshold]]

The default safety settings to use for all generations.

InputType property

InputType: TypeAlias

Get the input type for this runnable.

OutputType property

OutputType: type[str]

Get the input type for this runnable.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor. Default is an empty dictionary.

cache class-attribute instance-attribute

cache: BaseCache | bool | None = Field(
    default=None, exclude=True
)

Whether to cache the response.

  • If true, will use the global cache.
  • If false, will not use a cache
  • If None, will use the global cache if it's set, otherwise no cache.
  • If instance of BaseCache, will use the provided cache.

Caching is not currently supported for streaming methods of models.

verbose class-attribute instance-attribute

verbose: bool = Field(
    default_factory=_get_verbosity, exclude=True, repr=False
)

Whether to print out response text.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to add to the run trace.

tags class-attribute instance-attribute

tags: list[str] | None = Field(default=None, exclude=True)

Tags to add to the run trace.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = Field(
    default=None, exclude=True
)

Metadata to add to the run trace.

custom_get_token_ids class-attribute instance-attribute

custom_get_token_ids: Callable[[str], list[int]] | None = (
    Field(default=None, exclude=True)
)

Optional encoder to use for counting tokens.

model class-attribute instance-attribute

model: str = Field(
    ...,
    description="The name of the model to use.\nExamples:\n    - gemini-2.5-flash\n    - models/text-bison-001",
)

Model name to use.

google_api_key class-attribute instance-attribute

google_api_key: Optional[SecretStr] = Field(
    alias="api_key",
    default_factory=secret_from_env(
        "GOOGLE_API_KEY", default=None
    ),
)

Google AI API key. If not specified will be read from env var GOOGLE_API_KEY.

credentials class-attribute instance-attribute

credentials: Any = None

The default custom credentials (google.auth.credentials.Credentials) to use

temperature class-attribute instance-attribute

temperature: float = 0.7

Run inference with this temperature. Must be within [0.0, 2.0]. If unset, will default to 0.7.

top_p class-attribute instance-attribute

top_p: Optional[float] = None

Decode using nucleus sampling: consider the smallest set of tokens whose probability sum is at least top_p. Must be within [0.0, 1.0].

top_k class-attribute instance-attribute

top_k: Optional[int] = None

Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive.

max_output_tokens class-attribute instance-attribute

max_output_tokens: Optional[int] = Field(
    default=None, alias="max_tokens"
)

Maximum number of tokens to include in a candidate. Must be greater than zero. If unset, will use the model's default value, which varies by model. See https://ai.google.dev/gemini-api/docs/models for model-specific limits.

n class-attribute instance-attribute

n: int = 1

Number of chat completions to generate for each prompt. Note that the API may not return the full n completions if duplicates are generated.

max_retries class-attribute instance-attribute

max_retries: int = Field(default=6, alias='retries')

The maximum number of retries to make when generating. If unset, will default to 6.

timeout class-attribute instance-attribute

timeout: Optional[float] = Field(
    default=None, alias="request_timeout"
)

The maximum number of seconds to wait for a response.

safety_settings class-attribute instance-attribute

safety_settings: Optional[
    Dict[HarmCategory, HarmBlockThreshold]
] = None

The default safety settings to use for all generations.

For example:

.. code-block:: python from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory

safety_settings = {
    HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
    HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_ONLY_HIGH,
    HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
}

get_name

get_name(
    suffix: str | None = None, *, name: str | None = None
) -> str

Get the name of the Runnable.

Parameters:

Name Type Description Default
suffix str | None

An optional suffix to append to the name.

None
name str | None

An optional name to use instead of the Runnable's name.

None

Returns:

Type Description
str

The name of the Runnable.

get_input_schema

get_input_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate input to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the Runnable is invoked with.

This method allows to get an input schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate input.

get_input_jsonschema

get_input_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in version 0.3.0

get_output_schema

get_output_schema(
    config: RunnableConfig | None = None,
) -> type[BaseModel]

Get a pydantic model that can be used to validate output to the Runnable.

Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(
    config: RunnableConfig | None = None,
) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

A config to use when generating the schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in version 0.3.0

config_schema

config_schema(
    *, include: Sequence[str] | None = None
) -> type[BaseModel]

The type of config this Runnable accepts specified as a pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
type[BaseModel]

A pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(
    *, include: Sequence[str] | None = None
) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

Parameters:

Name Type Description Default
include Sequence[str] | None

A list of fields to include in the config schema.

None

Returns:

Type Description
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in version 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(
    config: RunnableConfig | None = None,
) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: (
        Runnable[Any, Other]
        | Callable[[Iterator[Any]], Iterator[Other]]
        | Callable[
            [AsyncIterator[Any]], AsyncIterator[Other]
        ]
        | Callable[[Any], Other]
        | Mapping[
            str,
            Runnable[Any, Other]
            | Callable[[Any], Other]
            | Any,
        ]
    ),
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: (
        Runnable[Other, Any]
        | Callable[[Iterator[Other]], Iterator[Any]]
        | Callable[
            [AsyncIterator[Other]], AsyncIterator[Any]
        ]
        | Callable[[Other], Any]
        | Mapping[
            str,
            Runnable[Other, Any]
            | Callable[[Other], Any]
            | Any,
        ]
    ),
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

Parameters:

Name Type Description Default
other Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

Another Runnable or a Runnable-like object.

required

Returns:

Type Description
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other],
    name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe runnables.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]

Parameters:

Name Type Description Default
*others Runnable[Any, Other] | Callable[[Any], Other]

Other Runnable or Runnable-like objects to compose

()
name str | None

An optional name for the resulting RunnableSequence.

None

Returns:

Type Description
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(
    keys: str | list[str],
) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick single key:

```python
import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
```

Pick list of keys:

```python
from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(
    str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
```

Parameters:

Name Type Description Default
keys str | list[str]

A key or list of keys to pick from the output dict.

required

Returns:

Type Description
RunnableSerializable[Any, Any]

a new Runnable.

assign

assign(
    **kwargs: (
        Runnable[dict[str, Any], Any]
        | Callable[[dict[str, Any]], Any]
        | Mapping[
            str,
            Runnable[dict[str, Any], Any]
            | Callable[[dict[str, Any]], Any],
        ]
    ),
) -> RunnableSerializable[Any, Any]

Assigns new fields to the dict output of this Runnable.

from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | llm | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | llm)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}

Parameters:

Name Type Description Default
**kwargs Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]]

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

{}

Returns:

Type Description
RunnableSerializable[Any, Any]

A new Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
**kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: (
        RunnableConfig | Sequence[RunnableConfig] | None
    ) = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

Parameters:

Name Type Description Default
inputs Sequence[Input]

A list of inputs to the Runnable.

required
config RunnableConfig | Sequence[RunnableConfig] | None

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

None
return_exceptions bool

Whether to return exceptions instead of raising them. Defaults to False.

False
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
diff bool

Whether to yield diffs between each step or the current state.

True
with_streamed_output_list bool

Whether to yield the streamed_output list.

True
include_names Sequence[str] | None

Only include logs with these names.

None
include_types Sequence[str] | None

Only include logs with these types.

None
include_tags Sequence[str] | None

Only include logs with these tags.

None
exclude_names Sequence[str] | None

Exclude logs with these names.

None
exclude_types Sequence[str] | None

Exclude logs with these types.

None
exclude_tags Sequence[str] | None

Exclude logs with these tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: str - Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: str - The name of the Runnable that generated the event.
  • run_id: str - randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: list[str] - The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: Optional[list[str]] - The tags of the Runnable that generated the event.
  • metadata: Optional[dict[str, Any]] - The metadata of the Runnable that generated the event.
  • data: dict[str, Any]

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | event | name | chunk | input | output | +==========================+==================+=====================================+===================================================+=====================================================+ | on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_start | [model name] | | {'input': 'hello'} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_stream | [model name] | 'Hello' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_llm_end | [model name] | | 'Hello human!' | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_start | format_docs | | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_stream | format_docs | 'hello world!, goodbye world!' | | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_chain_end | format_docs | | [Document(...)] | 'hello world!, goodbye world!' | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_start | some_tool | | {"x": 1, "y": "2"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_tool_end | some_tool | | | {"x": 1, "y": "2"} | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_start | [retriever name] | | {"query": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_start | [template_name] | | {"question": "hello"} | | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+ | on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) | +--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

+-----------+------+-----------------------------------------------------------------------------------------------------------+ | Attribute | Type | Description | +===========+======+===========================================================================================================+ | name | str | A user defined name for the event. | +-----------+------+-----------------------------------------------------------------------------------------------------------+ | data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. | +-----------+------+-----------------------------------------------------------------------------------------------------------+

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [event async for event in chain.astream_events("hello", version="v2")]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)

Parameters:

Name Type Description Default
input Any

The input to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable.

None
version Literal['v1', 'v2']

The version of the schema to use either 'v2' or 'v1'. Users should use 'v2'. 'v1' is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

'v2'
include_names Sequence[str] | None

Only include events from Runnables with matching names.

None
include_types Sequence[str] | None

Only include events from Runnables with matching types.

None
include_tags Sequence[str] | None

Only include events from Runnables with matching tags.

None
exclude_names Sequence[str] | None

Exclude events from Runnables with matching names.

None
exclude_types Sequence[str] | None

Exclude events from Runnables with matching types.

None
exclude_tags Sequence[str] | None

Exclude events from Runnables with matching tags.

None
kwargs Any

Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

{}

Yields:

Type Description
AsyncIterator[StreamEvent]

An async stream of StreamEvents.

Raises:

Type Description
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input Iterator[Input]

An iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses should override this method if they can start producing output while input is still being generated.

Parameters:

Name Type Description Default
input AsyncIterator[Input]

An async iterator of inputs to the Runnable.

required
config RunnableConfig | None

The config to use for the Runnable. Defaults to None.

None
kwargs Any | None

Additional keyword arguments to pass to the Runnable.

{}

Yields:

Type Description
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

Parameters:

Name Type Description Default
kwargs Any

The arguments to bind to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

llm = ChatOllama(model="llama3.1")

# Without bind.
chain = llm | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind.
chain = llm.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
config RunnableConfig | None

The config to bind to the Runnable.

None
kwargs Any

Additional keyword arguments to pass to the Runnable.

{}

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_end: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None,
    on_error: (
        Callable[[Run], None]
        | Callable[[Run, RunnableConfig], None]
        | None
    ) = None
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called before the Runnable starts running, with the Run object. Defaults to None.

None
on_end Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None

Called if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

Parameters:

Name Type Description Default
on_start AsyncListener | None

Called asynchronously before the Runnable starts running, with the Run object. Defaults to None.

None
on_end AsyncListener | None

Called asynchronously after the Runnable finishes running, with the Run object. Defaults to None.

None
on_error AsyncListener | None

Called asynchronously if the Runnable throws an error, with the Run object. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio

def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()

async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *,
    input_type: type[Input] | None = None,
    output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

Parameters:

Name Type Description Default
input_type type[Input] | None

The input type to bind to the Runnable. Defaults to None.

None
output_type type[Output] | None

The output type to bind to the Runnable. Defaults to None.

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[
        type[BaseException], ...
    ] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: (
        ExponentialJitterParams | None
    ) = None,
    stop_after_attempt: int = 3
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

Parameters:

Name Type Description Default
retry_if_exception_type tuple[type[BaseException], ...]

A tuple of exception types to retry on. Defaults to (Exception,).

(Exception,)
wait_exponential_jitter bool

Whether to add jitter to the wait time between retries. Defaults to True.

True
stop_after_attempt int

The maximum number of attempts to make before giving up. Defaults to 3.

3
exponential_jitter_params ExponentialJitterParams | None

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

None

Returns:

Type Description
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

Returns:

Type Description
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[
        type[BaseException], ...
    ] = (Exception,),
    exception_key: str | None = None
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle. Defaults to (Exception,).

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input. Defaults to None.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar

Parameters:

Name Type Description Default
fallbacks Sequence[Runnable[Input, Output]]

A sequence of runnables to try if the original Runnable fails.

required
exceptions_to_handle tuple[type[BaseException], ...]

A tuple of exception types to handle.

(Exception,)
exception_key str | None

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.

None

Returns:

Type Description
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each

RunnableWithFallbacks[Input, Output]

fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

Parameters:

Name Type Description Default
args_schema type[BaseModel] | None

The schema for the tool. Defaults to None.

None
name str | None

The name of the tool. Defaults to None.

None
description str | None

The description of the tool. Defaults to None.

None
arg_types dict[str, type] | None

A dictionary of argument names to types. Defaults to None.

None

Returns:

Type Description
BaseTool

A BaseTool instance.

Typed dict input:

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

Added in version 0.2.14

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

Returns:

Type Description
bool

Whether the class is serializable. Default is False.

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the langchain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

Returns:

Type Description
list[str]

The namespace as a list of strings.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object. For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> (
    SerializedConstructor | SerializedNotImplemented
)

Serialize the Runnable to JSON.

Returns:

Type Description
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

Returns:

Type Description
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

Parameters:

Name Type Description Default
**kwargs AnyConfigurableField

A dictionary of ConfigurableField instances to configure.

{}

Raises:

Type Description
ValueError

If a configuration key is not found in the Runnable.

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: (
        Runnable[Input, Output]
        | Callable[[], Runnable[Input, Output]]
    )
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnables that can be set at runtime.

Parameters:

Name Type Description Default
which ConfigurableField

The ConfigurableField instance that will be used to select the alternative.

required
default_key str

The default key to use if no alternative is selected. Defaults to 'default'.

'default'
prefix_keys bool

Whether to prefix the keys with the ConfigurableField id. Defaults to False.

False
**kwargs Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]

A dictionary of keys to Runnable instances or callables that return Runnable instances.

{}

Returns:

Type Description
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

set_verbose

set_verbose(verbose: bool | None) -> bool

If verbose is None, set it.

This allows users to pass in None as verbose to access the global setting.

Parameters:

Name Type Description Default
verbose bool | None

The verbosity setting to use.

required

Returns:

Type Description
bool

The verbosity setting to use.

with_structured_output

with_structured_output(
    schema: dict | type, **kwargs: Any
) -> Runnable[LanguageModelInput, dict | BaseModel]

Not implemented on this class.

get_token_ids

get_token_ids(text: str) -> list[int]

Return the ordered ids of the tokens in a text.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
list[int]

A list of ids corresponding to the tokens in the text, in order they occur

list[int]

in the text.

get_num_tokens_from_messages

get_num_tokens_from_messages(
    messages: list[BaseMessage],
    tools: Sequence | None = None,
) -> int

Get the number of tokens in the messages.

Useful for checking if an input fits in a model's context window.

Note

The base implementation of get_num_tokens_from_messages ignores tool schemas.

Parameters:

Name Type Description Default
messages list[BaseMessage]

The message inputs to tokenize.

required
tools Sequence | None

If provided, sequence of dict, BaseModel, function, or BaseTools to be converted to tool schemas.

None

Returns:

Type Description
int

The sum of the number of tokens across the messages.

generate

generate(
    prompts: list[str],
    stop: list[str] | None = None,
    callbacks: Callbacks | list[Callbacks] | None = None,
    *,
    tags: list[str] | list[list[str]] | None = None,
    metadata: (
        dict[str, Any] | list[dict[str, Any]] | None
    ) = None,
    run_name: str | list[str] | None = None,
    run_id: UUID | list[UUID | None] | None = None,
    **kwargs: Any
) -> LLMResult

Pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
prompts list[str]

List of string prompts.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks | list[Callbacks] | None

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | list[list[str]] | None

List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
metadata dict[str, Any] | list[dict[str, Any]] | None

List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
run_name str | list[str] | None

List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
run_id UUID | list[UUID | None] | None

List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Raises:

Type Description
ValueError

If prompts is not a list.

ValueError

If the length of callbacks, tags, metadata, or run_name (if provided) does not match the length of prompts.

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output.

agenerate async

agenerate(
    prompts: list[str],
    stop: list[str] | None = None,
    callbacks: Callbacks | list[Callbacks] | None = None,
    *,
    tags: list[str] | list[list[str]] | None = None,
    metadata: (
        dict[str, Any] | list[dict[str, Any]] | None
    ) = None,
    run_name: str | list[str] | None = None,
    run_id: UUID | list[UUID | None] | None = None,
    **kwargs: Any
) -> LLMResult

Asynchronously pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).

Parameters:

Name Type Description Default
prompts list[str]

List of string prompts.

required
stop list[str] | None

Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

None
callbacks Callbacks | list[Callbacks] | None

Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

None
tags list[str] | list[list[str]] | None

List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
metadata dict[str, Any] | list[dict[str, Any]] | None

List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
run_name str | list[str] | None

List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
run_id UUID | list[UUID | None] | None

List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

None
**kwargs Any

Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

{}

Raises:

Type Description
ValueError

If the length of callbacks, tags, metadata, or run_name (if provided) does not match the length of prompts.

Returns:

Type Description
LLMResult

An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output.

__str__

__str__() -> str

Return a string representation of the object for printing.

dict

dict(**kwargs: Any) -> dict

Return a dictionary of the LLM.

save

save(file_path: Path | str) -> None

Save the LLM.

Parameters:

Name Type Description Default
file_path Path | str

Path to file to save the LLM to.

required

Raises:

Type Description
ValueError

If the file path is not a string or Path object.

Example:

.. code-block:: python

    llm.save(file_path="path/llm.yaml")

__init__

__init__(**kwargs: Any) -> None

Needed for arg validation.

validate_environment

validate_environment() -> Self

Validates params and passes them to google-generativeai package.

get_num_tokens

get_num_tokens(text: str) -> int

Get the number of tokens present in the text.

Useful for checking if an input will fit in a model's context window.

Parameters:

Name Type Description Default
text str

The string input to tokenize.

required

Returns:

Type Description
int

The integer number of tokens in the text.