Skip to content

langchain-google-genai

PyPI - Version PyPI - License PyPI - Downloads

Reference docs

This page contains reference documentation for Google GenAI. See the docs for conceptual guides, tutorials, and examples on using Google GenAI modules.

langchain_google_genai

LangChain Google Generative AI Integration (GenAI).

This module integrates Google's Generative AI models, specifically the Gemini series, with the LangChain framework. It provides classes for interacting with chat models and generating embeddings, leveraging Google's advanced AI capabilities.

Chat Models

The ChatGoogleGenerativeAI class is the primary interface for interacting with Google's Gemini chat models. It allows users to send and receive messages using a specified Gemini model, suitable for various conversational AI applications.

LLMs

The GoogleGenerativeAI class is the primary interface for interacting with Google's Gemini LLMs. It allows users to generate text using a specified Gemini model.

Embeddings

The GoogleGenerativeAIEmbeddings class provides functionalities to generate embeddings using Google's models. These embeddings can be used for a range of NLP tasks, including semantic analysis, similarity comparisons, and more.

Using Chat Models

After setting up your environment with the required API key, you can interact with the Google Gemini models.

from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-2.5-pro")
llm.invoke("Sing a ballad of LangChain.")

Using LLMs

The package also supports generating text with Google's models.

from langchain_google_genai import GoogleGenerativeAI

llm = GoogleGenerativeAI(model="gemini-2.5-pro")
llm.invoke("Once upon a time, a library called LangChain")

Embedding Generation

The package also supports creating embeddings with Google's models, useful for textual similarity and other NLP applications.

from langchain_google_genai import GoogleGenerativeAIEmbeddings

embeddings = GoogleGenerativeAIEmbeddings(model="models/gemini-embedding-001")
embeddings.embed_query("hello, world!")

ChatGoogleGenerativeAI

Bases: _BaseGoogleGenerativeAI, BaseChatModel

Google GenAI chat model integration.

Instantiation

To use, you must have either:

  1. The GOOGLE_API_KEY environment variable set with your API key, or
  2. Pass your API key using the google_api_key kwarg to the ChatGoogleGenerativeAI constructor.
from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash")
llm.invoke("Write me a ballad about LangChain")
Invoke
messages = [
    ("system", "Translate the user sentence to French."),
    ("human", "I love programming."),
]
llm.invoke(messages)
AIMessage(
    content="J'adore programmer. \\n",
    response_metadata={
        "prompt_feedback": {"block_reason": 0, "safety_ratings": []},
        "finish_reason": "STOP",
        "safety_ratings": [
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
        ],
    },
    id="run-56cecc34-2e54-4b52-a974-337e47008ad2-0",
    usage_metadata={
        "input_tokens": 18,
        "output_tokens": 5,
        "total_tokens": 23,
    },
)
Stream
for chunk in llm.stream(messages):
    print(chunk)
AIMessageChunk(
    content="J",
    response_metadata={"finish_reason": "STOP", "safety_ratings": []},
    id="run-e905f4f4-58cb-4a10-a960-448a2bb649e3",
    usage_metadata={
        "input_tokens": 18,
        "output_tokens": 1,
        "total_tokens": 19,
    },
)
AIMessageChunk(
    content="'adore programmer. \\n",
    response_metadata={
        "finish_reason": "STOP",
        "safety_ratings": [
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
        ],
    },
    id="run-e905f4f4-58cb-4a10-a960-448a2bb649e3",
    usage_metadata={
        "input_tokens": 18,
        "output_tokens": 5,
        "total_tokens": 23,
    },
)
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
    full += chunk
full
AIMessageChunk(
    content="J'adore programmer. \\n",
    response_metadata={
        "finish_reason": "STOPSTOP",
        "safety_ratings": [
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "probability": "NEGLIGIBLE",
                "blocked": False,
            },
        ],
    },
    id="run-3ce13a42-cd30-4ad7-a684-f1f0b37cdeec",
    usage_metadata={
        "input_tokens": 36,
        "output_tokens": 6,
        "total_tokens": 42,
    },
)
Async
await llm.ainvoke(messages)

# stream:
async for chunk in (await llm.astream(messages))

# batch:
await llm.abatch([messages])
Context caching

Context caching allows you to store and reuse content (e.g., PDFs, images) for faster processing. The cached_content parameter accepts a cache name created via the Google Generative AI API.

Below are two examples: caching a single file directly and caching multiple files using Part.

Single file example

This caches a single file and queries it.

from google import genai
from google.genai import types
import time
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage

client = genai.Client()

# Upload file
file = client.files.upload(file="./example_file")
while file.state.name == "PROCESSING":
    time.sleep(2)
    file = client.files.get(name=file.name)

# Create cache
model = "models/gemini-2.5-flash"
cache = client.caches.create(
    model=model,
    config=types.CreateCachedContentConfig(
        display_name="Cached Content",
        system_instruction=(
            "You are an expert content analyzer, and your job is to answer "
            "the user's query based on the file you have access to."
        ),
        contents=[file],
        ttl="300s",
    ),
)

# Query with LangChain
llm = ChatGoogleGenerativeAI(
    model=model,
    cached_content=cache.name,
)
message = HumanMessage(content="Summarize the main points of the content.")
llm.invoke([message])

Multiple files example

This caches two files using Part and queries them together.

from google import genai
from google.genai.types import CreateCachedContentConfig, Content, Part
import time
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage

client = genai.Client()

# Upload files
file_1 = client.files.upload(file="./file1")
while file_1.state.name == "PROCESSING":
    time.sleep(2)
    file_1 = client.files.get(name=file_1.name)

file_2 = client.files.upload(file="./file2")
while file_2.state.name == "PROCESSING":
    time.sleep(2)
    file_2 = client.files.get(name=file_2.name)

# Create cache with multiple files
contents = [
    Content(
        role="user",
        parts=[
            Part.from_uri(file_uri=file_1.uri, mime_type=file_1.mime_type),
            Part.from_uri(file_uri=file_2.uri, mime_type=file_2.mime_type),
        ],
    )
]
model = "gemini-2.5-flash"
cache = client.caches.create(
    model=model,
    config=CreateCachedContentConfig(
        display_name="Cached Contents",
        system_instruction=(
            "You are an expert content analyzer, and your job is to answer "
            "the user's query based on the files you have access to."
        ),
        contents=contents,
        ttl="300s",
    ),
)

# Query with LangChain
llm = ChatGoogleGenerativeAI(
    model=model,
    cached_content=cache.name,
)
message = HumanMessage(
    content="Provide a summary of the key information across both files."
)
llm.invoke([message])
Tool calling
from pydantic import BaseModel, Field


class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(
        ..., description="The city and state, e.g. San Francisco, CA"
    )


class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(
        ..., description="The city and state, e.g. San Francisco, CA"
    )


llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke(
    "Which city is hotter today and which is bigger: LA or NY?"
)
ai_msg.tool_calls
[
    {
        "name": "GetWeather",
        "args": {"location": "Los Angeles, CA"},
        "id": "c186c99f-f137-4d52-947f-9e3deabba6f6",
    },
    {
        "name": "GetWeather",
        "args": {"location": "New York City, NY"},
        "id": "cebd4a5d-e800-4fa5-babd-4aa286af4f31",
    },
    {
        "name": "GetPopulation",
        "args": {"location": "Los Angeles, CA"},
        "id": "4f92d897-f5e4-4d34-a3bc-93062c92591e",
    },
    {
        "name": "GetPopulation",
        "args": {"location": "New York City, NY"},
        "id": "634582de-5186-4e4b-968b-f192f0a93678",
    },
]
Structured output
from typing import Optional

from pydantic import BaseModel, Field


class Joke(BaseModel):
    '''Joke to tell user.'''

    setup: str = Field(description="The setup of the joke")
    punchline: str = Field(description="The punchline to the joke")
    rating: Optional[int] = Field(
        description="How funny the joke is, from 1 to 10"
    )


# Default method uses function calling
structured_llm = llm.with_structured_output(Joke)

# For more reliable output, use json_schema with native responseSchema
structured_llm_json = llm.with_structured_output(Joke, method="json_schema")
structured_llm_json.invoke("Tell me a joke about cats")
Joke(
    setup="Why are cats so good at video games?",
    punchline="They have nine lives on the internet",
    rating=None,
)

Two methods are supported for structured output:

  • method='function_calling' (default): Uses tool calling to extract structured data. Compatible with all models.
  • method='json_schema': Uses Gemini's native structured output.

    Supports unions (anyOf), recursive schemas ($ref), property ordering preservation, and streaming of partial JSON chunks.

    Uses Gemini's response_json_schema API param. Refer to the Gemini API docs for more details.

The json_schema method is recommended for better reliability as it constrains the model's generation process directly rather than relying on post-processing tool calls.

Image input
import base64
import httpx
from langchain_core.messages import HumanMessage

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content
The weather in this image appears to be sunny and pleasant. The sky is a bright
blue with scattered white clouds, suggesting fair weather. The lush green grass
and trees indicate a warm and possibly slightly breezy day. There are no...
PDF input
import base64
from langchain_core.messages import HumanMessage

pdf_bytes = open("/path/to/your/test.pdf", "rb").read()
pdf_base64 = base64.b64encode(pdf_bytes).decode("utf-8")

message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the document in a sentence"},
        {
            "type": "file",
            "source_type": "base64",
            "mime_type": "application/pdf",
            "data": pdf_base64,
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content
This research paper describes a system developed for SemEval-2025 Task 9, which
aims to automate the detection of food hazards from recall reports, addressing
the class imbalance problem by leveraging LLM-based data augmentation...
Video input
import base64
from langchain_core.messages import HumanMessage

video_bytes = open("/path/to/your/video.mp4", "rb").read()
video_base64 = base64.b64encode(video_bytes).decode("utf-8")

message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "describe what's in this video in a sentence",
        },
        {
            "type": "file",
            "source_type": "base64",
            "mime_type": "video/mp4",
            "data": video_base64,
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content
Tom and Jerry, along with a turkey, engage in a chaotic Thanksgiving-themed
adventure involving a corn-on-the-cob chase, maze antics, and a disastrous
attempt to prepare a turkey dinner.

You can also pass YouTube URLs directly:

from langchain_core.messages import HumanMessage

message = HumanMessage(
    content=[
        {"type": "text", "text": "summarize the video in 3 sentences."},
        {
            "type": "media",
            "file_uri": "https://www.youtube.com/watch?v=9hE5-98ZeCg",
            "mime_type": "video/mp4",
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content
The video is a demo of multimodal live streaming in Gemini 2.0. The narrator is
sharing his screen in AI Studio and asks if the AI can see it. The AI then reads
text that is highlighted on the screen, defines the word...
Audio input
import base64
from langchain_core.messages import HumanMessage

audio_bytes = open("/path/to/your/audio.mp3", "rb").read()
audio_base64 = base64.b64encode(audio_bytes).decode("utf-8")

message = HumanMessage(
    content=[
        {"type": "text", "text": "summarize this audio in a sentence"},
        {
            "type": "file",
            "source_type": "base64",
            "mime_type": "audio/mp3",
            "data": audio_base64,
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content
In this episode of the Made by Google podcast, Stephen Johnson and Simon
Tokumine discuss NotebookLM, a tool designed to help users understand complex
material in various modalities, with a focus on its unexpected uses, the...
File upload

You can also upload files to Google's servers and reference them by URI.

This works for PDFs, images, videos, and audio files.

import time
from google import genai
from langchain_core.messages import HumanMessage

client = genai.Client()

myfile = client.files.upload(file="/path/to/your/sample.pdf")
while myfile.state.name == "PROCESSING":
    time.sleep(2)
    myfile = client.files.get(name=myfile.name)

message = HumanMessage(
    content=[
        {"type": "text", "text": "What is in the document?"},
        {
            "type": "media",
            "file_uri": myfile.uri,
            "mime_type": "application/pdf",
        },
    ]
)
ai_msg = llm.invoke([message])
ai_msg.content
This research paper assesses and mitigates multi-turn jailbreak vulnerabilities
in large language models using the Crescendo attack study, evaluating attack
success rates and mitigation strategies like prompt...
Thinking

For thinking models, you have the option to adjust the number of internal thinking tokens used (thinking_budget) or to disable thinking altogether. Note that not all models allow disabling thinking.

See the Gemini API docs for more details on thinking models.

To see a thinking model's thoughts, set include_thoughts=True to have the model's reasoning summaries included in the response.

llm = ChatGoogleGenerativeAI(
    model="gemini-2.5-flash",
    include_thoughts=True,
)
ai_msg = llm.invoke("How many 'r's are in the word 'strawberry'?")
Token usage
ai_msg = llm.invoke(messages)
ai_msg.usage_metadata
{"input_tokens": 18, "output_tokens": 5, "total_tokens": 23}
METHOD DESCRIPTION
get_name

Get the name of the Runnable.

get_input_schema

Get a Pydantic model that can be used to validate input to the Runnable.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a Pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a Pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe Runnable objects.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

ainvoke

Transform a single input into an output.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

stream

Default implementation of stream, which calls invoke.

astream

Default implementation of astream, which calls ainvoke.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

get_lc_namespace

Get the namespace of the LangChain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnable objects that can be set at runtime.

set_verbose

If verbose is None, set it.

generate_prompt

Pass a sequence of prompts to the model and return model generations.

agenerate_prompt

Asynchronously pass a sequence of prompts and return model generations.

get_token_ids

Return the ordered IDs of the tokens in a text.

get_num_tokens_from_messages

Get the number of tokens in the messages.

generate

Pass a sequence of prompts to the model and return model generations.

agenerate

Asynchronously pass a sequence of prompts to a model and return generations.

dict

Return a dictionary of the LLM.

__init__

Needed for arg validation.

is_lc_serializable

Is this class serializable?

build_extra

Build extra kwargs from additional params that were passed in.

validate_environment

Validates params and passes them to google-generativeai package.

invoke

Override invoke on ChatGoogleGenerativeAI to add code_execution.

get_num_tokens

Get the number of tokens present in the text. Uses the model's tokenizer.

with_structured_output

Model wrapper that returns outputs formatted to match the given schema.

bind_tools

Bind tool-like objects to this chat model.

name class-attribute instance-attribute

name: str | None = None

The name of the Runnable. Used for debugging and tracing.

InputType property

InputType: TypeAlias

Get the input type for this Runnable.

OutputType property

OutputType: Any

Get the output type for this Runnable.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a Pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a Pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

Default is an empty dictionary.

cache class-attribute instance-attribute

cache: BaseCache | bool | None = Field(default=None, exclude=True)

Whether to cache the response.

  • If True, will use the global cache.
  • If False, will not use a cache
  • If None, will use the global cache if it's set, otherwise no cache.
  • If instance of BaseCache, will use the provided cache.

Caching is not currently supported for streaming methods of models.

verbose class-attribute instance-attribute

verbose: bool = Field(default_factory=_get_verbosity, exclude=True, repr=False)

Whether to print out response text.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to add to the run trace.

tags class-attribute instance-attribute

tags: list[str] | None = Field(default=None, exclude=True)

Tags to add to the run trace.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = Field(default=None, exclude=True)

Metadata to add to the run trace.

custom_get_token_ids class-attribute instance-attribute

custom_get_token_ids: Callable[[str], list[int]] | None = Field(
    default=None, exclude=True
)

Optional encoder to use for counting tokens.

rate_limiter class-attribute instance-attribute

rate_limiter: BaseRateLimiter | None = Field(default=None, exclude=True)

An optional rate limiter to use for limiting the number of requests.

disable_streaming class-attribute instance-attribute

disable_streaming: bool | Literal['tool_calling'] = False

Whether to disable streaming for this model.

If streaming is bypassed, then stream/astream/astream_events will defer to invoke/ainvoke.

  • If True, will always bypass streaming case.
  • If 'tool_calling', will bypass streaming case only when the model is called with a tools keyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke) only when the tools argument is provided. This offers the best of both worlds.
  • If False (Default), will always use streaming case if available.

The main reason for this flag is that code might be written using stream and a user may want to swap out a given model for another model whose the implementation does not properly support streaming.

output_version class-attribute instance-attribute

output_version: str | None = Field(
    default_factory=from_env("LC_OUTPUT_VERSION", default=None)
)

Version of AIMessage output format to store in message content.

AIMessage.content_blocks will lazily parse the contents of content into a standard format. This flag can be used to additionally store the standard format in message content, e.g., for serialization purposes.

Supported values:

  • 'v0': provider-specific format in content (can lazily-parse with content_blocks)
  • 'v1': standardized format in content (consistent with content_blocks)

Partner packages (e.g., langchain-openai) can also use this field to roll out new content formats in a backward-compatible way.

Added in langchain-core 1.0

profile class-attribute instance-attribute

profile: ModelProfile | None = Field(default=None, exclude=True)

Profile detailing model capabilities.

Beta feature

This is a beta feature. The format of model profiles is subject to change.

If not specified, automatically loaded from the provider package on initialization if data is available.

Example profile data includes context window sizes, supported modalities, or support for tool calling, structured output, and other features.

Added in langchain-core 1.1

model class-attribute instance-attribute

model: str = Field(...)

Model name to use.

google_api_key class-attribute instance-attribute

google_api_key: SecretStr | None = Field(
    alias="api_key",
    default_factory=secret_from_env(["GOOGLE_API_KEY", "GEMINI_API_KEY"], default=None),
)

Google AI API key.

If not specified, will check the env vars GOOGLE_API_KEY and GEMINI_API_KEY with precedence given to GOOGLE_API_KEY.

credentials class-attribute instance-attribute

credentials: Any = None

The default custom credentials to use when making API calls.

If not provided, credentials will be ascertained from the GOOGLE_API_KEY or GEMINI_API_KEY env vars with precedence given to GOOGLE_API_KEY.

temperature class-attribute instance-attribute

temperature: float = 0.7

Run inference with this temperature.

Must be within [0.0, 2.0].

Gemini 3.0+ models

Setting temperature < 1.0 for Gemini 3.0+ models can cause infinite loops, degraded reasoning performance, and failure on complex tasks.

top_p class-attribute instance-attribute

top_p: float | None = None

Decode using nucleus sampling.

Consider the smallest set of tokens whose probability sum is at least top_p.

Must be within [0.0, 1.0].

top_k class-attribute instance-attribute

top_k: int | None = None

Decode using top-k sampling: consider the set of top_k most probable tokens.

Must be positive.

max_output_tokens class-attribute instance-attribute

max_output_tokens: int | None = Field(default=None, alias='max_tokens')

Maximum number of tokens to include in a candidate.

Must be greater than zero.

If unset, will use the model's default value, which varies by model.

See docs for model-specific limits.

To constrain the number of thinking tokens to use when generating a response, see the thinking_budget parameter.

n class-attribute instance-attribute

n: int = 1

Number of chat completions to generate for each prompt.

Note that the API may not return the full n completions if duplicates are generated.

max_retries class-attribute instance-attribute

max_retries: int = Field(default=6, alias='retries')

The maximum number of retries to make when generating.

timeout class-attribute instance-attribute

timeout: float | None = Field(default=None, alias='request_timeout')

The maximum number of seconds to wait for a response.

client_options class-attribute instance-attribute

client_options: dict | None = Field(default=None)

A dictionary of client options to pass to the Google API client.

Example: api_endpoint

Warning

If both client_options['api_endpoint'] and base_url are specified, the api_endpoint in client_options takes precedence.

base_url class-attribute instance-attribute

base_url: str | None = Field(default=None)

Base URL to use for the API client.

This is a convenience alias for client_options['api_endpoint'].

  • REST transport (transport="rest"): Accepts full URLs with paths

    • https://api.example.com/v1/path
    • https://webhook.site/unique-path
  • gRPC transports (transport="grpc" or transport="grpc_asyncio"): Only accepts hostname:port format

    • api.example.com:443
    • custom.googleapis.com:443
    • https://api.example.com (auto-formatted to api.example.com:443)
    • NOT https://webhook.site/path (paths are not supported in gRPC)
    • NOT api.example.com/path (paths are not supported in gRPC)

Warning

If client_options already contains an api_endpoint, this parameter will be ignored in favor of the existing value.

transport class-attribute instance-attribute

transport: str | None = Field(default=None, alias='api_transport')

A string, one of: ['rest', 'grpc', 'grpc_asyncio'].

The Google client library defaults to 'grpc' for sync clients.

For async clients, 'rest' is converted to 'grpc_asyncio' unless a custom endpoint is specified.

additional_headers class-attribute instance-attribute

additional_headers: dict[str, str] | None = Field(default=None)

Key-value dictionary representing additional headers for the model call

response_modalities class-attribute instance-attribute

response_modalities: list[Modality] | None = Field(default=None)

A list of modalities of the response

media_resolution class-attribute instance-attribute

media_resolution: MediaResolution | None = Field(default=None)

Media resolution for the input media.

May be defined at the individual part level, allowing for mixed-resolution requests (e.g., images and videos of different resolutions in the same request).

May be 'low', 'medium', or 'high'.

Can be set either per-part or globally for all media inputs in the request. To set globally, set in the generation_config.

Model compatibility

Setting per-part media resolution requests to Gemini 2.5 models is not supported.

thinking_budget class-attribute instance-attribute

thinking_budget: int | None = Field(default=None)

Indicates the thinking budget in tokens.

Used to disable thinking for supported models (when set to 0) or to constrain the number of tokens used for thinking.

Dynamic thinking (allowing the model to decide how many tokens to use) is enabled when set to -1.

More information, including per-model limits, can be found in the Gemini API docs.

include_thoughts class-attribute instance-attribute

include_thoughts: bool | None = Field(default=None)

Indicates whether to include thoughts in the response.

Note

This parameter is only applicable for models that support thinking.

This does not disable thinking; to disable thinking, set thinking_budget to 0. for supported models. See the thinking_budget parameter for more details.

safety_settings class-attribute instance-attribute

safety_settings: dict[HarmCategory, HarmBlockThreshold] | None = None

Default safety settings to use for all generations.

Example

from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory

safety_settings = {
    HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
    HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_ONLY_HIGH,
    HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
}

thinking_level class-attribute instance-attribute

thinking_level: Literal['low', 'high'] | None = Field(default=None)

Indicates the thinking level.

Supported values
  • 'low': Minimizes latency and cost.
  • 'high': Maximizes reasoning depth.

Replaces thinking_budget

thinking_budget is deprecated for Gemini 3+ models. If both parameters are provided, thinking_level takes precedence.

If left unspecified, the model's default thinking level is used. For Gemini 3+, this defaults to 'high'.

convert_system_message_to_human class-attribute instance-attribute

convert_system_message_to_human: bool = False

Whether to merge any leading SystemMessage into the following HumanMessage.

Gemini does not support system messages; any unsupported messages will raise an error.

response_mime_type class-attribute instance-attribute

response_mime_type: str | None = None

Output response MIME type of the generated candidate text.

Supported MIME types
  • 'text/plain': (default) Text output.
  • 'application/json': JSON response in the candidates.
  • 'text/x.enum': Enum in plain text. (legacy; use JSON schema output instead)

Note

The model also needs to be prompted to output the appropriate response type, otherwise the behavior is undefined.

(In other words, simply setting this param doesn't force the model to comply; it only tells the model the kind of output expected. You still need to prompt it correctly.)

response_schema class-attribute instance-attribute

response_schema: dict[str, Any] | None = None

Enforce a schema to the output.

The format of the dictionary should follow Open API schema.

Has JSON Schema support including:

  • anyOf for unions
  • $ref for recursive schemas
  • Output property ordering
  • Minimum/maximum constraints
  • Streaming of partial JSON chunks

Refer to the Gemini API docs for more details.

cached_content class-attribute instance-attribute

cached_content: str | None = None

The name of the cached content used as context to serve the prediction.

Note

Only used in explicit caching, where users can have control over caching (e.g. what content to cache) and enjoy guaranteed cost savings. Format: cachedContents/{cachedContent}.

stop class-attribute instance-attribute

stop: list[str] | None = None

Stop sequences for the model.

streaming class-attribute instance-attribute

streaming: bool | None = None

Whether to stream responses from the model.

model_kwargs class-attribute instance-attribute

model_kwargs: dict[str, Any] = Field(default_factory=dict)

Holds any unexpected initialization parameters.

get_name

get_name(suffix: str | None = None, *, name: str | None = None) -> str

Get the name of the Runnable.

PARAMETER DESCRIPTION
suffix

An optional suffix to append to the name.

TYPE: str | None DEFAULT: None

name

An optional name to use instead of the Runnable's name.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
str

The name of the Runnable.

get_input_schema

get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]

Get a Pydantic model that can be used to validate input to the Runnable.

Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the Runnable is invoked with.

This method allows to get an input schema for a specific configuration.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate input.

get_input_jsonschema

get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in langchain-core 0.3.0

get_output_schema

get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]

Get a Pydantic model that can be used to validate output to the Runnable.

Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in langchain-core 0.3.0

config_schema

config_schema(*, include: Sequence[str] | None = None) -> type[BaseModel]

The type of config this Runnable accepts specified as a Pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(*, include: Sequence[str] | None = None) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in langchain-core 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: Runnable[Any, Other]
    | Callable[[Iterator[Any]], Iterator[Other]]
    | Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
    | Callable[[Any], Other]
    | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: Runnable[Other, Any]
    | Callable[[Iterator[Other]], Iterator[Any]]
    | Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
    | Callable[[Other], Any]
    | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe Runnable objects.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
PARAMETER DESCRIPTION
*others

Other Runnable or Runnable-like objects to compose

TYPE: Runnable[Any, Other] | Callable[[Any], Other] DEFAULT: ()

name

An optional name for the resulting RunnableSequence.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(keys: str | list[str]) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick a single key

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]

Pick a list of keys

from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(
    str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
PARAMETER DESCRIPTION
keys

A key or list of keys to pick from the output dict.

TYPE: str | list[str]

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

a new Runnable.

assign

Assigns new fields to the dict output of this Runnable.

from langchain_core.language_models.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | model | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | model)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
PARAMETER DESCRIPTION
**kwargs

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

TYPE: Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

A new Runnable.

ainvoke async

ainvoke(
    input: LanguageModelInput,
    config: RunnableConfig | None = None,
    *,
    stop: list[str] | None = None,
    **kwargs: Any,
) -> AIMessage

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable.

The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

batch

batch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable.

The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[Input],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> list[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable.

The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable.

The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

stream

stream(
    input: LanguageModelInput,
    config: RunnableConfig | None = None,
    *,
    stop: list[str] | None = None,
    **kwargs: Any,
) -> Iterator[AIMessageChunk]

Default implementation of stream, which calls invoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

astream async

astream(
    input: LanguageModelInput,
    config: RunnableConfig | None = None,
    *,
    stop: list[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[AIMessageChunk]

Default implementation of astream, which calls ainvoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

diff

Whether to yield diffs between each step or the current state.

TYPE: bool DEFAULT: True

with_streamed_output_list

Whether to yield the streamed_output list.

TYPE: bool DEFAULT: True

include_names

Only include logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvent that provide real-time information about the progress of the Runnable, including StreamEvent from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: The name of the Runnable that generated the event.
  • run_id: Randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: The tags of the Runnable that generated the event.
  • metadata: The metadata of the Runnable that generated the event.
  • data: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

event name chunk input output
on_chat_model_start '[model name]' {"messages": [[SystemMessage, HumanMessage]]}
on_chat_model_stream '[model name]' AIMessageChunk(content="hello")
on_chat_model_end '[model name]' {"messages": [[SystemMessage, HumanMessage]]} AIMessageChunk(content="hello world")
on_llm_start '[model name]' {'input': 'hello'}
on_llm_stream '[model name]' 'Hello'
on_llm_end '[model name]' 'Hello human!'
on_chain_start 'format_docs'
on_chain_stream 'format_docs' 'hello world!, goodbye world!'
on_chain_end 'format_docs' [Document(...)] 'hello world!, goodbye world!'
on_tool_start 'some_tool' {"x": 1, "y": "2"}
on_tool_end 'some_tool' {"x": 1, "y": "2"}
on_retriever_start '[retriever name]' {"query": "hello"}
on_retriever_end '[retriever name]' {"query": "hello"} [Document(...), ..]
on_prompt_start '[template_name]' {"question": "hello"}
on_prompt_end '[template_name]' {"question": "hello"} ChatPromptValue(messages: [SystemMessage, ...])

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

Attribute Type Description
name str A user defined name for the event.
data Any The data associated with the event. This can be anything, though we suggest making it JSON serializable.

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

Example

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]
Dispatch custom event
from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

version

The version of the schema to use, either 'v2' or 'v1'.

Users should use 'v2'.

'v1' is for backwards compatibility and will be deprecated in 0.4.0.

No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

TYPE: Literal['v1', 'v2'] DEFAULT: 'v2'

include_names

Only include events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[StreamEvent]

An async stream of StreamEvent.

RAISES DESCRIPTION
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An iterator of inputs to the Runnable.

TYPE: Iterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None,
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An async iterator of inputs to the Runnable.

TYPE: AsyncIterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

PARAMETER DESCRIPTION
**kwargs

The arguments to bind to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

model = ChatOllama(model="llama3.1")

# Without bind
chain = model | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
config

The config to bind to the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
    on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
    on_error: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called before the Runnable starts running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_end

Called after the Runnable finishes running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_error

Called if the Runnable throws an error, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called asynchronously before the Runnable starts running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_end

Called asynchronously after the Runnable finishes running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_error

Called asynchronously if the Runnable throws an error, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio


def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()


async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")


async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")


async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")


runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start, on_end=fn_end
)


async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))


asyncio.run(concurrent_runs())
# Result:
# on start callback starts at 2025-03-01T07:05:22.875378+00:00
# on start callback starts at 2025-03-01T07:05:22.875495+00:00
# on start callback ends at 2025-03-01T07:05:25.878862+00:00
# on start callback ends at 2025-03-01T07:05:25.878947+00:00
# Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
# Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
# Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
# on end callback starts at 2025-03-01T07:05:27.882360+00:00
# Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
# on end callback starts at 2025-03-01T07:05:28.882428+00:00
# on end callback ends at 2025-03-01T07:05:29.883893+00:00
# on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
input_type

The input type to bind to the Runnable.

TYPE: type[Input] | None DEFAULT: None

output_type

The output type to bind to the Runnable.

TYPE: type[Output] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: ExponentialJitterParams | None = None,
    stop_after_attempt: int = 3,
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

PARAMETER DESCRIPTION
retry_if_exception_type

A tuple of exception types to retry on.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

wait_exponential_jitter

Whether to add jitter to the wait time between retries.

TYPE: bool DEFAULT: True

stop_after_attempt

The maximum number of attempts to make before giving up.

TYPE: int DEFAULT: 3

exponential_jitter_params

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

TYPE: ExponentialJitterParams | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

RETURNS DESCRIPTION
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
    exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key.

If None, exceptions will not be passed to fallbacks.

If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar
PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key.

If None, exceptions will not be passed to fallbacks.

If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None,
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema.

Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema.

You can also pass arg_types to just specify the required arguments and their types.

PARAMETER DESCRIPTION
args_schema

The schema for the tool.

TYPE: type[BaseModel] | None DEFAULT: None

name

The name of the tool.

TYPE: str | None DEFAULT: None

description

The description of the tool.

TYPE: str | None DEFAULT: None

arg_types

A dictionary of argument names to types.

TYPE: dict[str, type] | None DEFAULT: None

RETURNS DESCRIPTION
BaseTool

A BaseTool instance.

TypedDict input

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

str input

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the LangChain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

RETURNS DESCRIPTION
list[str]

The namespace.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> SerializedConstructor | SerializedNotImplemented

Serialize the Runnable to JSON.

RETURNS DESCRIPTION
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

RETURNS DESCRIPTION
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

PARAMETER DESCRIPTION
**kwargs

A dictionary of ConfigurableField instances to configure.

TYPE: AnyConfigurableField DEFAULT: {}

RAISES DESCRIPTION
ValueError

If a configuration key is not found in the Runnable.

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

Example

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ", model.invoke("tell me something about chess").content
)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnable objects that can be set at runtime.

PARAMETER DESCRIPTION
which

The ConfigurableField instance that will be used to select the alternative.

TYPE: ConfigurableField

default_key

The default key to use if no alternative is selected.

TYPE: str DEFAULT: 'default'

prefix_keys

Whether to prefix the keys with the ConfigurableField id.

TYPE: bool DEFAULT: False

**kwargs

A dictionary of keys to Runnable instances or callables that return Runnable instances.

TYPE: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

Example

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

set_verbose

set_verbose(verbose: bool | None) -> bool

If verbose is None, set it.

This allows users to pass in None as verbose to access the global setting.

PARAMETER DESCRIPTION
verbose

The verbosity setting to use.

TYPE: bool | None

RETURNS DESCRIPTION
bool

The verbosity setting to use.

generate_prompt

generate_prompt(
    prompts: list[PromptValue],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    **kwargs: Any,
) -> LLMResult

Pass a sequence of prompts to the model and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER DESCRIPTION
prompts

List of PromptValue objects.

A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessage objects for chat models).

TYPE: list[PromptValue]

stop

Stop words to use when generating.

Model output is cut off at the first occurrence of any of these substrings.

TYPE: list[str] | None DEFAULT: None

callbacks

Callbacks to pass through.

Used for executing additional functionality, such as logging or streaming, throughout generation.

TYPE: Callbacks DEFAULT: None

**kwargs

Arbitrary additional keyword arguments.

These are usually passed to the model provider API call.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
LLMResult

An LLMResult, which contains a list of candidate Generation objects for each input prompt and additional model provider-specific output.

agenerate_prompt async

agenerate_prompt(
    prompts: list[PromptValue],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    **kwargs: Any,
) -> LLMResult

Asynchronously pass a sequence of prompts and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER DESCRIPTION
prompts

List of PromptValue objects.

A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessage objects for chat models).

TYPE: list[PromptValue]

stop

Stop words to use when generating.

Model output is cut off at the first occurrence of any of these substrings.

TYPE: list[str] | None DEFAULT: None

callbacks

Callbacks to pass through.

Used for executing additional functionality, such as logging or streaming, throughout generation.

TYPE: Callbacks DEFAULT: None

**kwargs

Arbitrary additional keyword arguments.

These are usually passed to the model provider API call.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
LLMResult

An LLMResult, which contains a list of candidate Generation objects for each input prompt and additional model provider-specific output.

get_token_ids

get_token_ids(text: str) -> list[int]

Return the ordered IDs of the tokens in a text.

PARAMETER DESCRIPTION
text

The string input to tokenize.

TYPE: str

RETURNS DESCRIPTION
list[int]

A list of IDs corresponding to the tokens in the text, in order they occur in the text.

get_num_tokens_from_messages

get_num_tokens_from_messages(
    messages: list[BaseMessage], tools: Sequence | None = None
) -> int

Get the number of tokens in the messages.

Useful for checking if an input fits in a model's context window.

This should be overridden by model-specific implementations to provide accurate token counts via model-specific tokenizers.

Note

  • The base implementation of get_num_tokens_from_messages ignores tool schemas.
  • The base implementation of get_num_tokens_from_messages adds additional prefixes to messages in represent user roles, which will add to the overall token count. Model-specific implementations may choose to handle this differently.
PARAMETER DESCRIPTION
messages

The message inputs to tokenize.

TYPE: list[BaseMessage]

tools

If provided, sequence of dict, BaseModel, function, or BaseTool objects to be converted to tool schemas.

TYPE: Sequence | None DEFAULT: None

RETURNS DESCRIPTION
int

The sum of the number of tokens across the messages.

generate

generate(
    messages: list[list[BaseMessage]],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    **kwargs: Any,
) -> LLMResult

Pass a sequence of prompts to the model and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER DESCRIPTION
messages

List of list of messages.

TYPE: list[list[BaseMessage]]

stop

Stop words to use when generating.

Model output is cut off at the first occurrence of any of these substrings.

TYPE: list[str] | None DEFAULT: None

callbacks

Callbacks to pass through.

Used for executing additional functionality, such as logging or streaming, throughout generation.

TYPE: Callbacks DEFAULT: None

tags

The tags to apply.

TYPE: list[str] | None DEFAULT: None

metadata

The metadata to apply.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The ID of the run.

TYPE: UUID | None DEFAULT: None

**kwargs

Arbitrary additional keyword arguments.

These are usually passed to the model provider API call.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
LLMResult

An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output.

agenerate async

agenerate(
    messages: list[list[BaseMessage]],
    stop: list[str] | None = None,
    callbacks: Callbacks = None,
    *,
    tags: list[str] | None = None,
    metadata: dict[str, Any] | None = None,
    run_name: str | None = None,
    run_id: UUID | None = None,
    **kwargs: Any,
) -> LLMResult

Asynchronously pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER DESCRIPTION
messages

List of list of messages.

TYPE: list[list[BaseMessage]]

stop

Stop words to use when generating.

Model output is cut off at the first occurrence of any of these substrings.

TYPE: list[str] | None DEFAULT: None

callbacks

Callbacks to pass through.

Used for executing additional functionality, such as logging or streaming, throughout generation.

TYPE: Callbacks DEFAULT: None

tags

The tags to apply.

TYPE: list[str] | None DEFAULT: None

metadata

The metadata to apply.

TYPE: dict[str, Any] | None DEFAULT: None

run_name

The name of the run.

TYPE: str | None DEFAULT: None

run_id

The ID of the run.

TYPE: UUID | None DEFAULT: None

**kwargs

Arbitrary additional keyword arguments.

These are usually passed to the model provider API call.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
LLMResult

An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output.

dict

dict(**kwargs: Any) -> dict

Return a dictionary of the LLM.

__init__

__init__(**kwargs: Any) -> None

Needed for arg validation.

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

RETURNS DESCRIPTION
bool

Whether the class is serializable. Default is False.

build_extra classmethod

build_extra(values: dict[str, Any]) -> Any

Build extra kwargs from additional params that were passed in.

validate_environment

validate_environment() -> Self

Validates params and passes them to google-generativeai package.

invoke

invoke(
    input: LanguageModelInput,
    config: RunnableConfig | None = None,
    *,
    code_execution: bool | None = None,
    stop: list[str] | None = None,
    **kwargs: Any,
) -> AIMessage

Override invoke on ChatGoogleGenerativeAI to add code_execution.

See the models page to see if your chosen model supports code execution. When enabled, the model can execute code to solve problems.

get_num_tokens

get_num_tokens(text: str) -> int

Get the number of tokens present in the text. Uses the model's tokenizer.

Useful for checking if an input will fit in a model's context window.

PARAMETER DESCRIPTION
text

The string input to tokenize.

TYPE: str

RETURNS DESCRIPTION
int

The integer number of tokens in the text.

Example
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash")
num_tokens = llm.get_num_tokens("Hello, world!")
print(num_tokens)
# 4

with_structured_output

with_structured_output(
    schema: dict | type[BaseModel],
    method: Literal["function_calling", "json_mode", "json_schema"]
    | None = "function_calling",
    *,
    include_raw: bool = False,
    **kwargs: Any,
) -> Runnable[LanguageModelInput, dict | BaseModel]

Model wrapper that returns outputs formatted to match the given schema.

PARAMETER DESCRIPTION
schema

The output schema. Can be passed in as:

  • An OpenAI function/tool schema,
  • A JSON Schema,
  • A TypedDict class,
  • Or a Pydantic class.

If schema is a Pydantic class then the model output will be a Pydantic instance of that class, and the model-generated fields will be validated by the Pydantic class. Otherwise the model output will be a dict and will not be validated.

See langchain_core.utils.function_calling.convert_to_openai_tool for more on how to properly specify types and descriptions of schema fields when specifying a Pydantic or TypedDict class.

TYPE: Dict | type

include_raw

If False then only the parsed structured output is returned.

If an error occurs during model output parsing it will be raised.

If True then both the raw model response (a BaseMessage) and the parsed model response will be returned.

If an error occurs during output parsing it will be caught and returned as well.

The final output is always a dict with keys 'raw', 'parsed', and 'parsing_error'.

TYPE: bool DEFAULT: False

RAISES DESCRIPTION
ValueError

If there are any unsupported kwargs.

NotImplementedError

If the model does not implement with_structured_output().

RETURNS DESCRIPTION
Runnable[LanguageModelInput, Dict | BaseModel]

A Runnable that takes same inputs as a langchain_core.language_models.chat.BaseChatModel. If include_raw is False and schema is a Pydantic class, Runnable outputs an instance of schema (i.e., a Pydantic object). Otherwise, if include_raw is False then Runnable outputs a dict.

If include_raw is True, then Runnable outputs a dict with keys:

  • 'raw': BaseMessage
  • 'parsed': None if there was a parsing error, otherwise the type depends on the schema as described above.
  • 'parsing_error': BaseException | None

Example: Pydantic schema (include_raw=False):

from pydantic import BaseModel


class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    justification: str


model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(AnswerWithJustification)

structured_model.invoke(
    "What weighs more a pound of bricks or a pound of feathers"
)

# -> AnswerWithJustification(
#     answer='They weigh the same',
#     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )

Example: Pydantic schema (include_raw=True):

from pydantic import BaseModel


class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    justification: str


model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(
    AnswerWithJustification, include_raw=True
)

structured_model.invoke(
    "What weighs more a pound of bricks or a pound of feathers"
)
# -> {
#     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
#     'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
#     'parsing_error': None
# }

Example: dict schema (include_raw=False):

from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool


class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''

    answer: str
    justification: str


dict_schema = convert_to_openai_tool(AnswerWithJustification)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(dict_schema)

structured_model.invoke(
    "What weighs more a pound of bricks or a pound of feathers"
)
# -> {
#     'answer': 'They weigh the same',
#     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }

Behavior changed in langchain-core 0.2.26

Added support for TypedDict class.

bind_tools

bind_tools(
    tools: Sequence[dict[str, Any] | type | Callable[..., Any] | BaseTool | Tool],
    tool_config: dict | _ToolConfigDict | None = None,
    *,
    tool_choice: _ToolChoiceType | bool | None = None,
    **kwargs: Any,
) -> Runnable[LanguageModelInput, AIMessage]

Bind tool-like objects to this chat model.

Assumes model is compatible with google-generativeAI tool-calling API.

PARAMETER DESCRIPTION
tools

A list of tool definitions to bind to this chat model.

Can be a pydantic model, Callable, or BaseTool. Pydantic models, Callable, and BaseTool objects will be automatically converted to their schema dictionary representation.

Tools with Union types in their arguments are now supported and converted to anyOf schemas.

TYPE: Sequence[dict[str, Any] | type | Callable[..., Any] | BaseTool | Tool]

**kwargs

Any additional parameters to pass to the Runnable constructor.

TYPE: Any DEFAULT: {}

GoogleGenerativeAIEmbeddings

Bases: BaseModel, Embeddings

Google Generative AI Embeddings.

To use, you must have either:

  1. The GOOGLE_API_KEY environment variable set with your API key, or
  2. Pass your API key using the google_api_key kwarg to the GoogleGenerativeAIEmbeddings constructor.
Example
from langchain_google_genai import GoogleGenerativeAIEmbeddings

embeddings = GoogleGenerativeAIEmbeddings(model="gemini-embedding-001")
embeddings.embed_query("What's our Q1 revenue?")
METHOD DESCRIPTION
validate_environment

Validates params and passes them to google-generativeai package.

embed_documents

Embed a list of strings using the batch endpoint

embed_query

Embed a text, using the non-batch endpoint

aembed_documents

Embed a list of strings using the batch endpoint

aembed_query

Embed a text, using the non-batch endpoint.

model class-attribute instance-attribute

model: str = Field(...)

The name of the embedding model to use.

Example: 'models/gemini-embedding-001'

task_type class-attribute instance-attribute

task_type: str | None = Field(default=None)

The task type.

Valid options include:

  • 'task_type_unspecified'
  • 'retrieval_query'
  • 'retrieval_document'
  • 'semantic_similarity'
  • 'classification'
  • 'clustering'

google_api_key class-attribute instance-attribute

google_api_key: SecretStr | None = Field(
    default_factory=secret_from_env("GOOGLE_API_KEY", default=None)
)

The Google API key to use.

If not provided, the GOOGLE_API_KEY environment variable will be used.

credentials class-attribute instance-attribute

credentials: Any = Field(default=None, exclude=True)

The default custom credentials to use when making API calls.

(google.auth.credentials.Credentials)

If not provided, credentials will be ascertained from the GOOGLE_API_KEY env var.

client_options class-attribute instance-attribute

client_options: dict | None = Field(default=None)

A dictionary of client options to pass to the Google API client.

Example: api_endpoint

base_url class-attribute instance-attribute

base_url: str | None = Field(default=None)

The base URL to use for the API client.

Alias of client_options['api_endpoint'].

transport class-attribute instance-attribute

transport: str | None = Field(default=None)

A string, one of: ['rest', 'grpc', 'grpc_asyncio'].

request_options class-attribute instance-attribute

request_options: dict | None = Field(default=None)

A dictionary of request options to pass to the Google API client.

Example: {'timeout': 10}

validate_environment

validate_environment() -> Self

Validates params and passes them to google-generativeai package.

embed_documents

embed_documents(
    texts: list[str],
    *,
    batch_size: int = _DEFAULT_BATCH_SIZE,
    task_type: str | None = None,
    titles: list[str] | None = None,
    output_dimensionality: int | None = None,
) -> list[list[float]]

Embed a list of strings using the batch endpoint

Google Generative AI currently sets a max batch size of 100 strings.

PARAMETER DESCRIPTION
texts

The list of strings to embed.

TYPE: list[str]

batch_size

Batch size of embeddings to send to the model

TYPE: int DEFAULT: _DEFAULT_BATCH_SIZE

task_type

TYPE: str | None DEFAULT: None

titles

Optional list of titles for texts provided.

Only applicable when TaskType is 'RETRIEVAL_DOCUMENT'.

TYPE: list[str] | None DEFAULT: None

output_dimensionality

TYPE: int | None DEFAULT: None

RETURNS DESCRIPTION
list[list[float]]

List of embeddings, one for each text.

embed_query

embed_query(
    text: str,
    *,
    task_type: str | None = None,
    title: str | None = None,
    output_dimensionality: int | None = None,
) -> list[float]

Embed a text, using the non-batch endpoint

PARAMETER DESCRIPTION
text

The text to embed.

TYPE: str

task_type

TYPE: str | None DEFAULT: None

title

Optional title for the text.

Only applicable when TaskType is 'RETRIEVAL_DOCUMENT'.

TYPE: str | None DEFAULT: None

output_dimensionality

TYPE: int | None DEFAULT: None

RETURNS DESCRIPTION
list[float]

Embedding for the text.

aembed_documents async

aembed_documents(
    texts: list[str],
    *,
    batch_size: int = _DEFAULT_BATCH_SIZE,
    task_type: str | None = None,
    titles: list[str] | None = None,
    output_dimensionality: int | None = None,
) -> list[list[float]]

Embed a list of strings using the batch endpoint

Google Generative AI currently sets a max batch size of 100 strings.

PARAMETER DESCRIPTION
texts

The list of strings to embed.

TYPE: list[str]

batch_size

The batch size of embeddings to send to the model

TYPE: int DEFAULT: _DEFAULT_BATCH_SIZE

task_type

TYPE: str | None DEFAULT: None

titles

Optional list of titles for texts provided.

Only applicable when TaskType is 'RETRIEVAL_DOCUMENT'.

TYPE: list[str] | None DEFAULT: None

output_dimensionality

TYPE: int | None DEFAULT: None

RETURNS DESCRIPTION
list[list[float]]

List of embeddings, one for each text.

aembed_query async

aembed_query(
    text: str,
    *,
    task_type: str | None = None,
    title: str | None = None,
    output_dimensionality: int | None = None,
) -> list[float]

Embed a text, using the non-batch endpoint.

PARAMETER DESCRIPTION
text

The text to embed.

TYPE: str

task_type

TYPE: str | None DEFAULT: None

title

Optional title for the text.

Only applicable when TaskType is 'RETRIEVAL_DOCUMENT'.

TYPE: str | None DEFAULT: None

output_dimensionality

TYPE: int | None DEFAULT: None

RETURNS DESCRIPTION
list[float]

Embedding for the text.

GoogleVectorStore

Bases: VectorStore

Google GenerativeAI Vector Store.

Currently, it computes the embedding vectors on the server side.

Add texts to an existing corpus

store = GoogleVectorStore(corpus_id="123")
store.add_documents(documents, document_id="456")

Create a new corpus

store = GoogleVectorStore.create_corpus(
    corpus_id="123", display_name="My Google corpus"
)

Query the corpus for relevant passages

store.as_retriever()
    .get_relevant_documents("Who caught the gingerbread man?"
)

You can also operate at Google's Document level.

Add texts to an existing Google Vector Store Document

doc_store = GoogleVectorStore(corpus_id="123", document_id="456")
doc_store.add_documents(documents)

Create a new Google Vector Store Document

doc_store = GoogleVectorStore.create_document(
    corpus_id="123", document_id="456", display_name="My Google document"
)

Query the Google document

doc_store.as_retriever()             .get_relevant_documents("Who caught the gingerbread man?")
METHOD DESCRIPTION
get_by_ids

Get documents by their IDs.

aget_by_ids

Async get documents by their IDs.

aadd_texts

Async run more texts through the embeddings and add to the VectorStore.

add_documents

Add or update documents in the VectorStore.

aadd_documents

Async run more documents through the embeddings and add to the VectorStore.

search

Return docs most similar to query using a specified search type.

asearch

Async return docs most similar to query using a specified search type.

asimilarity_search_with_score

Async run similarity search with distance.

similarity_search_with_relevance_scores

Return docs and relevance scores in the range [0, 1].

asimilarity_search_with_relevance_scores

Async return docs and relevance scores in the range [0, 1].

asimilarity_search

Async return docs most similar to query.

similarity_search_by_vector

Return docs most similar to embedding vector.

asimilarity_search_by_vector

Async return docs most similar to embedding vector.

max_marginal_relevance_search

Return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search

Async return docs selected using the maximal marginal relevance.

max_marginal_relevance_search_by_vector

Return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search_by_vector

Async return docs selected using the maximal marginal relevance.

from_documents

Return VectorStore initialized from documents and embeddings.

afrom_documents

Async return VectorStore initialized from documents and embeddings.

afrom_texts

Async return VectorStore initialized from texts and embeddings.

as_retriever

Return VectorStoreRetriever initialized from this VectorStore.

__init__

Returns an existing Google Semantic Retriever corpus or document.

create_corpus

Create a Google Semantic Retriever corpus.

create_document

Create a Google Semantic Retriever document.

from_texts

Returns a vector store of an existing document with the specified text.

add_texts

Add texts to the vector store.

similarity_search

Search the vector store for relevant texts.

similarity_search_with_score

Run similarity search with distance.

delete

Delete chunks.

adelete

Delete chunks asynchronously.

embeddings property

embeddings: Embeddings | None

Access the query embedding object if available.

name property

name: str

Returns the name of the Google entity.

You shouldn't need to care about this unless you want to access your corpus or document via Google Generative AI API.

corpus_id property

corpus_id: str

Returns the corpus ID managed by this vector store.

document_id property

document_id: str | None

Returns the document ID managed by this vector store.

get_by_ids

get_by_ids(ids: Sequence[str]) -> list[Document]

Get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

PARAMETER DESCRIPTION
ids

List of IDs to retrieve.

TYPE: Sequence[str]

RETURNS DESCRIPTION
list[Document]

List of Document objects.

aget_by_ids async

aget_by_ids(ids: Sequence[str]) -> list[Document]

Async get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

PARAMETER DESCRIPTION
ids

List of IDs to retrieve.

TYPE: Sequence[str]

RETURNS DESCRIPTION
list[Document]

List of Document objects.

aadd_texts async

aadd_texts(
    texts: Iterable[str],
    metadatas: list[dict] | None = None,
    *,
    ids: list[str] | None = None,
    **kwargs: Any,
) -> list[str]

Async run more texts through the embeddings and add to the VectorStore.

PARAMETER DESCRIPTION
texts

Iterable of strings to add to the VectorStore.

TYPE: Iterable[str]

metadatas

Optional list of metadatas associated with the texts.

TYPE: list[dict] | None DEFAULT: None

ids

Optional list

TYPE: list[str] | None DEFAULT: None

**kwargs

VectorStore specific parameters.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[str]

List of IDs from adding the texts into the VectorStore.

RAISES DESCRIPTION
ValueError

If the number of metadatas does not match the number of texts.

ValueError

If the number of IDs does not match the number of texts.

add_documents

add_documents(documents: list[Document], **kwargs: Any) -> list[str]

Add or update documents in the VectorStore.

PARAMETER DESCRIPTION
documents

Documents to add to the VectorStore.

TYPE: list[Document]

**kwargs

Additional keyword arguments.

If kwargs contains IDs and documents contain ids, the IDs in the kwargs will receive precedence.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[str]

List of IDs of the added texts.

aadd_documents async

aadd_documents(documents: list[Document], **kwargs: Any) -> list[str]

Async run more documents through the embeddings and add to the VectorStore.

PARAMETER DESCRIPTION
documents

Documents to add to the VectorStore.

TYPE: list[Document]

**kwargs

Additional keyword arguments.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[str]

List of IDs of the added texts.

search

search(query: str, search_type: str, **kwargs: Any) -> list[Document]

Return docs most similar to query using a specified search type.

PARAMETER DESCRIPTION
query

Input text.

TYPE: str

search_type

Type of search to perform. Can be 'similarity', 'mmr', or 'similarity_score_threshold'.

TYPE: str

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[Document]

List of Document objects most similar to the query.

RAISES DESCRIPTION
ValueError

If search_type is not one of 'similarity', 'mmr', or 'similarity_score_threshold'.

asearch async

asearch(query: str, search_type: str, **kwargs: Any) -> list[Document]

Async return docs most similar to query using a specified search type.

PARAMETER DESCRIPTION
query

Input text.

TYPE: str

search_type

Type of search to perform. Can be 'similarity', 'mmr', or 'similarity_score_threshold'.

TYPE: str

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[Document]

List of Document objects most similar to the query.

RAISES DESCRIPTION
ValueError

If search_type is not one of 'similarity', 'mmr', or 'similarity_score_threshold'.

asimilarity_search_with_score async

asimilarity_search_with_score(
    *args: Any, **kwargs: Any
) -> list[tuple[Document, float]]

Async run similarity search with distance.

PARAMETER DESCRIPTION
*args

Arguments to pass to the search method.

TYPE: Any DEFAULT: ()

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[tuple[Document, float]]

List of tuples of (doc, similarity_score).

similarity_search_with_relevance_scores

similarity_search_with_relevance_scores(
    query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]

Return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

PARAMETER DESCRIPTION
query

Input text.

TYPE: str

k

Number of Document objects to return.

TYPE: int DEFAULT: 4

**kwargs

kwargs to be passed to similarity search. Should include score_threshold, An optional floating point value between 0 to 1 to filter the resulting set of retrieved docs

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[tuple[Document, float]]

List of tuples of (doc, similarity_score).

asimilarity_search_with_relevance_scores async

asimilarity_search_with_relevance_scores(
    query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]

Async return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

PARAMETER DESCRIPTION
query

Input text.

TYPE: str

k

Number of Document objects to return.

TYPE: int DEFAULT: 4

**kwargs

kwargs to be passed to similarity search. Should include score_threshold, An optional floating point value between 0 to 1 to filter the resulting set of retrieved docs

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[tuple[Document, float]]

List of tuples of (doc, similarity_score)

asimilarity_search(query: str, k: int = 4, **kwargs: Any) -> list[Document]

Async return docs most similar to query.

PARAMETER DESCRIPTION
query

Input text.

TYPE: str

k

Number of Document objects to return.

TYPE: int DEFAULT: 4

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[Document]

List of Document objects most similar to the query.

similarity_search_by_vector

similarity_search_by_vector(
    embedding: list[float], k: int = 4, **kwargs: Any
) -> list[Document]

Return docs most similar to embedding vector.

PARAMETER DESCRIPTION
embedding

Embedding to look up documents similar to.

TYPE: list[float]

k

Number of Document objects to return.

TYPE: int DEFAULT: 4

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[Document]

List of Document objects most similar to the query vector.

asimilarity_search_by_vector async

asimilarity_search_by_vector(
    embedding: list[float], k: int = 4, **kwargs: Any
) -> list[Document]

Async return docs most similar to embedding vector.

PARAMETER DESCRIPTION
embedding

Embedding to look up documents similar to.

TYPE: list[float]

k

Number of Document objects to return.

TYPE: int DEFAULT: 4

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[Document]

List of Document objects most similar to the query vector.

max_marginal_relevance_search(
    query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

PARAMETER DESCRIPTION
query

Text to look up documents similar to.

TYPE: str

k

Number of Document objects to return.

TYPE: int DEFAULT: 4

fetch_k

Number of Document objects to fetch to pass to MMR algorithm.

TYPE: int DEFAULT: 20

lambda_mult

Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.

TYPE: float DEFAULT: 0.5

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[Document]

List of Document objects selected by maximal marginal relevance.

amax_marginal_relevance_search(
    query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

PARAMETER DESCRIPTION
query

Text to look up documents similar to.

TYPE: str

k

Number of Document objects to return.

TYPE: int DEFAULT: 4

fetch_k

Number of Document objects to fetch to pass to MMR algorithm.

TYPE: int DEFAULT: 20

lambda_mult

Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.

TYPE: float DEFAULT: 0.5

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[Document]

List of Document objects selected by maximal marginal relevance.

max_marginal_relevance_search_by_vector

max_marginal_relevance_search_by_vector(
    embedding: list[float],
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    **kwargs: Any,
) -> list[Document]

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

PARAMETER DESCRIPTION
embedding

Embedding to look up documents similar to.

TYPE: list[float]

k

Number of Document objects to return.

TYPE: int DEFAULT: 4

fetch_k

Number of Document objects to fetch to pass to MMR algorithm.

TYPE: int DEFAULT: 20

lambda_mult

Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.

TYPE: float DEFAULT: 0.5

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[Document]

List of Document objects selected by maximal marginal relevance.

amax_marginal_relevance_search_by_vector async

amax_marginal_relevance_search_by_vector(
    embedding: list[float],
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    **kwargs: Any,
) -> list[Document]

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

PARAMETER DESCRIPTION
embedding

Embedding to look up documents similar to.

TYPE: list[float]

k

Number of Document objects to return.

TYPE: int DEFAULT: 4

fetch_k

Number of Document objects to fetch to pass to MMR algorithm.

TYPE: int DEFAULT: 20

lambda_mult

Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.

TYPE: float DEFAULT: 0.5

**kwargs

Arguments to pass to the search method.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
list[Document]

List of Document objects selected by maximal marginal relevance.

from_documents classmethod

from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) -> Self

Return VectorStore initialized from documents and embeddings.

PARAMETER DESCRIPTION
documents

List of Document objects to add to the VectorStore.

TYPE: list[Document]

embedding

Embedding function to use.

TYPE: Embeddings

**kwargs

Additional keyword arguments.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Self

VectorStore initialized from documents and embeddings.

afrom_documents async classmethod

afrom_documents(
    documents: list[Document], embedding: Embeddings, **kwargs: Any
) -> Self

Async return VectorStore initialized from documents and embeddings.

PARAMETER DESCRIPTION
documents

List of Document objects to add to the VectorStore.

TYPE: list[Document]

embedding

Embedding function to use.

TYPE: Embeddings

**kwargs

Additional keyword arguments.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Self

VectorStore initialized from documents and embeddings.

afrom_texts async classmethod

afrom_texts(
    texts: list[str],
    embedding: Embeddings,
    metadatas: list[dict] | None = None,
    *,
    ids: list[str] | None = None,
    **kwargs: Any,
) -> Self

Async return VectorStore initialized from texts and embeddings.

PARAMETER DESCRIPTION
texts

Texts to add to the VectorStore.

TYPE: list[str]

embedding

Embedding function to use.

TYPE: Embeddings

metadatas

Optional list of metadatas associated with the texts.

TYPE: list[dict] | None DEFAULT: None

ids

Optional list of IDs associated with the texts.

TYPE: list[str] | None DEFAULT: None

**kwargs

Additional keyword arguments.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Self

VectorStore initialized from texts and embeddings.

as_retriever

as_retriever(**kwargs: Any) -> VectorStoreRetriever

Return VectorStoreRetriever initialized from this VectorStore.

PARAMETER DESCRIPTION
**kwargs

Keyword arguments to pass to the search function. Can include:

  • search_type: Defines the type of search that the Retriever should perform. Can be 'similarity' (default), 'mmr', or 'similarity_score_threshold'.
  • search_kwargs: Keyword arguments to pass to the search function. Can include things like:

    • k: Amount of documents to return (Default: 4)
    • score_threshold: Minimum relevance threshold for similarity_score_threshold
    • fetch_k: Amount of documents to pass to MMR algorithm (Default: 20)
    • lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5)
    • filter: Filter by document metadata

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
VectorStoreRetriever

Retriever class for VectorStore.

Examples:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr", search_kwargs={"k": 6, "lambda_mult": 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 50})

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={"score_threshold": 0.8},
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={"k": 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={"filter": {"paper_title": "GPT-4 Technical Report"}}
)

__init__

__init__(*, corpus_id: str, document_id: str | None = None, **kwargs: Any) -> None

Returns an existing Google Semantic Retriever corpus or document.

If just the corpus ID is provided, the vector store operates over all documents within that corpus.

If the document ID is provided, the vector store operates over just that document.

RAISES DESCRIPTION
DoesNotExistsException

If the IDs do not match to anything on Google server. In this case, consider using create_corpus or create_document to create one.

create_corpus classmethod

create_corpus(
    corpus_id: str | None = None, display_name: str | None = None
) -> GoogleVectorStore

Create a Google Semantic Retriever corpus.

PARAMETER DESCRIPTION
corpus_id

The ID to use to create the new corpus. If not provided, Google server will provide one.

TYPE: str | None DEFAULT: None

display_name

The title of the new corpus. If not provided, Google server will provide one.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
GoogleVectorStore

An instance of vector store that points to the newly created corpus.

create_document classmethod

create_document(
    corpus_id: str,
    document_id: str | None = None,
    display_name: str | None = None,
    metadata: dict[str, Any] | None = None,
) -> GoogleVectorStore

Create a Google Semantic Retriever document.

PARAMETER DESCRIPTION
corpus_id

ID of an existing corpus.

TYPE: str

document_id

The ID to use to create the new Google Semantic Retriever document. If not provided, Google server will provide one.

TYPE: str | None DEFAULT: None

display_name

The title of the new document. If not provided, Google server will provide one.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
GoogleVectorStore

An instance of vector store that points to the newly created document.

from_texts classmethod

from_texts(
    texts: list[str],
    embedding: Embeddings | None = None,
    metadatas: list[dict[str, Any]] | None = None,
    *,
    corpus_id: str | None = None,
    document_id: str | None = None,
    **kwargs: Any,
) -> GoogleVectorStore

Returns a vector store of an existing document with the specified text.

PARAMETER DESCRIPTION
corpus_id

REQUIRED. Must be an existing corpus.

TYPE: str | None DEFAULT: None

document_id

REQUIRED. Must be an existing document.

TYPE: str | None DEFAULT: None

texts

Texts to be loaded into the vector store.

TYPE: list[str]

RETURNS DESCRIPTION
GoogleVectorStore

A vector store pointing to the specified Google Semantic Retriever Document.

RAISES DESCRIPTION
DoesNotExistsException

If the IDs do not match to anything at Google server.

add_texts

add_texts(
    texts: Iterable[str],
    metadatas: list[dict[str, Any]] | None = None,
    *,
    document_id: str | None = None,
    **kwargs: Any,
) -> list[str]

Add texts to the vector store.

If the vector store points to a corpus (instead of a document), you must also provide a document_id.

RETURNS DESCRIPTION
list[str]

Chunk's names created on Google servers.

similarity_search(
    query: str, k: int = 4, filter: dict[str, Any] | None = None, **kwargs: Any
) -> list[Document]

Search the vector store for relevant texts.

similarity_search_with_score

similarity_search_with_score(
    query: str, k: int = 4, filter: dict[str, Any] | None = None, **kwargs: Any
) -> list[tuple[Document, float]]

Run similarity search with distance.

delete

delete(ids: list[str] | None = None, **kwargs: Any) -> bool | None

Delete chunks.

Note that the "ids" are not corpus ID or document ID. Rather, these are the entity names returned by add_texts.

RETURNS DESCRIPTION
bool | None

True if successful. Otherwise, you should get an exception anyway.

adelete async

adelete(ids: list[str] | None = None, **kwargs: Any) -> bool | None

Delete chunks asynchronously.

Note that the "ids" are not corpus ID or document ID. Rather, these are the entity names returned by add_texts.

RETURNS DESCRIPTION
bool | None

True if successful. Otherwise, you should get an exception anyway.

GoogleGenerativeAI

Bases: _BaseGoogleGenerativeAI, BaseLLM

Google GenerativeAI text completion large language models (legacy LLMs).

Basic Usage

from langchain_google_genai import GoogleGenerativeAI

llm = GoogleGenerativeAI(model="gemini-2.5-pro")
METHOD DESCRIPTION
get_name

Get the name of the Runnable.

get_input_schema

Get a Pydantic model that can be used to validate input to the Runnable.

get_input_jsonschema

Get a JSON schema that represents the input to the Runnable.

get_output_schema

Get a Pydantic model that can be used to validate output to the Runnable.

get_output_jsonschema

Get a JSON schema that represents the output of the Runnable.

config_schema

The type of config this Runnable accepts specified as a Pydantic model.

get_config_jsonschema

Get a JSON schema that represents the config of the Runnable.

get_graph

Return a graph representation of this Runnable.

get_prompts

Return a list of prompts used by this Runnable.

__or__

Runnable "or" operator.

__ror__

Runnable "reverse-or" operator.

pipe

Pipe Runnable objects.

pick

Pick keys from the output dict of this Runnable.

assign

Assigns new fields to the dict output of this Runnable.

invoke

Transform a single input into an output.

ainvoke

Transform a single input into an output.

batch

Default implementation runs invoke in parallel using a thread pool executor.

batch_as_completed

Run invoke in parallel on a list of inputs.

abatch

Default implementation runs ainvoke in parallel using asyncio.gather.

abatch_as_completed

Run ainvoke in parallel on a list of inputs.

stream

Default implementation of stream, which calls invoke.

astream

Default implementation of astream, which calls ainvoke.

astream_log

Stream all output from a Runnable, as reported to the callback system.

astream_events

Generate a stream of events.

transform

Transform inputs to outputs.

atransform

Transform inputs to outputs.

bind

Bind arguments to a Runnable, returning a new Runnable.

with_config

Bind config to a Runnable, returning a new Runnable.

with_listeners

Bind lifecycle listeners to a Runnable, returning a new Runnable.

with_alisteners

Bind async lifecycle listeners to a Runnable.

with_types

Bind input and output types to a Runnable, returning a new Runnable.

with_retry

Create a new Runnable that retries the original Runnable on exceptions.

map

Return a new Runnable that maps a list of inputs to a list of outputs.

with_fallbacks

Add fallbacks to a Runnable, returning a new Runnable.

as_tool

Create a BaseTool from a Runnable.

is_lc_serializable

Is this class serializable?

get_lc_namespace

Get the namespace of the LangChain object.

lc_id

Return a unique identifier for this class for serialization purposes.

to_json

Serialize the Runnable to JSON.

to_json_not_implemented

Serialize a "not implemented" object.

configurable_fields

Configure particular Runnable fields at runtime.

configurable_alternatives

Configure alternatives for Runnable objects that can be set at runtime.

set_verbose

If verbose is None, set it.

generate_prompt

Pass a sequence of prompts to the model and return model generations.

agenerate_prompt

Asynchronously pass a sequence of prompts and return model generations.

with_structured_output

Not implemented on this class.

get_token_ids

Return the ordered IDs of the tokens in a text.

get_num_tokens_from_messages

Get the number of tokens in the messages.

generate

Pass a sequence of prompts to a model and return generations.

agenerate

Asynchronously pass a sequence of prompts to a model and return generations.

__str__

Return a string representation of the object for printing.

dict

Return a dictionary of the LLM.

save

Save the LLM.

__init__

Needed for arg validation.

validate_environment

Validates params and passes them to google-generativeai package.

get_num_tokens

Get the number of tokens present in the text.

name class-attribute instance-attribute

name: str | None = None

The name of the Runnable. Used for debugging and tracing.

InputType property

InputType: TypeAlias

Get the input type for this Runnable.

OutputType property

OutputType: type[str]

Get the input type for this Runnable.

input_schema property

input_schema: type[BaseModel]

The type of input this Runnable accepts specified as a Pydantic model.

output_schema property

output_schema: type[BaseModel]

Output schema.

The type of output this Runnable produces specified as a Pydantic model.

config_specs property

config_specs: list[ConfigurableFieldSpec]

List configurable fields for this Runnable.

lc_attributes property

lc_attributes: dict

List of attribute names that should be included in the serialized kwargs.

These attributes must be accepted by the constructor.

Default is an empty dictionary.

cache class-attribute instance-attribute

cache: BaseCache | bool | None = Field(default=None, exclude=True)

Whether to cache the response.

  • If True, will use the global cache.
  • If False, will not use a cache
  • If None, will use the global cache if it's set, otherwise no cache.
  • If instance of BaseCache, will use the provided cache.

Caching is not currently supported for streaming methods of models.

verbose class-attribute instance-attribute

verbose: bool = Field(default_factory=_get_verbosity, exclude=True, repr=False)

Whether to print out response text.

callbacks class-attribute instance-attribute

callbacks: Callbacks = Field(default=None, exclude=True)

Callbacks to add to the run trace.

tags class-attribute instance-attribute

tags: list[str] | None = Field(default=None, exclude=True)

Tags to add to the run trace.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = Field(default=None, exclude=True)

Metadata to add to the run trace.

custom_get_token_ids class-attribute instance-attribute

custom_get_token_ids: Callable[[str], list[int]] | None = Field(
    default=None, exclude=True
)

Optional encoder to use for counting tokens.

model class-attribute instance-attribute

model: str = Field(...)

Model name to use.

google_api_key class-attribute instance-attribute

google_api_key: SecretStr | None = Field(
    alias="api_key",
    default_factory=secret_from_env(["GOOGLE_API_KEY", "GEMINI_API_KEY"], default=None),
)

Google AI API key.

If not specified, will check the env vars GOOGLE_API_KEY and GEMINI_API_KEY with precedence given to GOOGLE_API_KEY.

credentials class-attribute instance-attribute

credentials: Any = None

The default custom credentials to use when making API calls.

If not provided, credentials will be ascertained from the GOOGLE_API_KEY or GEMINI_API_KEY env vars with precedence given to GOOGLE_API_KEY.

temperature class-attribute instance-attribute

temperature: float = 0.7

Run inference with this temperature.

Must be within [0.0, 2.0].

Gemini 3.0+ models

Setting temperature < 1.0 for Gemini 3.0+ models can cause infinite loops, degraded reasoning performance, and failure on complex tasks.

top_p class-attribute instance-attribute

top_p: float | None = None

Decode using nucleus sampling.

Consider the smallest set of tokens whose probability sum is at least top_p.

Must be within [0.0, 1.0].

top_k class-attribute instance-attribute

top_k: int | None = None

Decode using top-k sampling: consider the set of top_k most probable tokens.

Must be positive.

max_output_tokens class-attribute instance-attribute

max_output_tokens: int | None = Field(default=None, alias='max_tokens')

Maximum number of tokens to include in a candidate.

Must be greater than zero.

If unset, will use the model's default value, which varies by model.

See docs for model-specific limits.

To constrain the number of thinking tokens to use when generating a response, see the thinking_budget parameter.

n class-attribute instance-attribute

n: int = 1

Number of chat completions to generate for each prompt.

Note that the API may not return the full n completions if duplicates are generated.

max_retries class-attribute instance-attribute

max_retries: int = Field(default=6, alias='retries')

The maximum number of retries to make when generating.

timeout class-attribute instance-attribute

timeout: float | None = Field(default=None, alias='request_timeout')

The maximum number of seconds to wait for a response.

client_options class-attribute instance-attribute

client_options: dict | None = Field(default=None)

A dictionary of client options to pass to the Google API client.

Example: api_endpoint

Warning

If both client_options['api_endpoint'] and base_url are specified, the api_endpoint in client_options takes precedence.

base_url class-attribute instance-attribute

base_url: str | None = Field(default=None)

Base URL to use for the API client.

This is a convenience alias for client_options['api_endpoint'].

  • REST transport (transport="rest"): Accepts full URLs with paths

    • https://api.example.com/v1/path
    • https://webhook.site/unique-path
  • gRPC transports (transport="grpc" or transport="grpc_asyncio"): Only accepts hostname:port format

    • api.example.com:443
    • custom.googleapis.com:443
    • https://api.example.com (auto-formatted to api.example.com:443)
    • NOT https://webhook.site/path (paths are not supported in gRPC)
    • NOT api.example.com/path (paths are not supported in gRPC)

Warning

If client_options already contains an api_endpoint, this parameter will be ignored in favor of the existing value.

transport class-attribute instance-attribute

transport: str | None = Field(default=None, alias='api_transport')

A string, one of: ['rest', 'grpc', 'grpc_asyncio'].

The Google client library defaults to 'grpc' for sync clients.

For async clients, 'rest' is converted to 'grpc_asyncio' unless a custom endpoint is specified.

additional_headers class-attribute instance-attribute

additional_headers: dict[str, str] | None = Field(default=None)

Key-value dictionary representing additional headers for the model call

response_modalities class-attribute instance-attribute

response_modalities: list[Modality] | None = Field(default=None)

A list of modalities of the response

media_resolution class-attribute instance-attribute

media_resolution: MediaResolution | None = Field(default=None)

Media resolution for the input media.

May be defined at the individual part level, allowing for mixed-resolution requests (e.g., images and videos of different resolutions in the same request).

May be 'low', 'medium', or 'high'.

Can be set either per-part or globally for all media inputs in the request. To set globally, set in the generation_config.

Model compatibility

Setting per-part media resolution requests to Gemini 2.5 models is not supported.

thinking_budget class-attribute instance-attribute

thinking_budget: int | None = Field(default=None)

Indicates the thinking budget in tokens.

Used to disable thinking for supported models (when set to 0) or to constrain the number of tokens used for thinking.

Dynamic thinking (allowing the model to decide how many tokens to use) is enabled when set to -1.

More information, including per-model limits, can be found in the Gemini API docs.

include_thoughts class-attribute instance-attribute

include_thoughts: bool | None = Field(default=None)

Indicates whether to include thoughts in the response.

Note

This parameter is only applicable for models that support thinking.

This does not disable thinking; to disable thinking, set thinking_budget to 0. for supported models. See the thinking_budget parameter for more details.

safety_settings class-attribute instance-attribute

safety_settings: dict[HarmCategory, HarmBlockThreshold] | None = None

Default safety settings to use for all generations.

Example

from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory

safety_settings = {
    HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
    HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_ONLY_HIGH,
    HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
}

get_name

get_name(suffix: str | None = None, *, name: str | None = None) -> str

Get the name of the Runnable.

PARAMETER DESCRIPTION
suffix

An optional suffix to append to the name.

TYPE: str | None DEFAULT: None

name

An optional name to use instead of the Runnable's name.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
str

The name of the Runnable.

get_input_schema

get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]

Get a Pydantic model that can be used to validate input to the Runnable.

Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the Runnable is invoked with.

This method allows to get an input schema for a specific configuration.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate input.

get_input_jsonschema

get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the input to the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the input to the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_input_jsonschema())

Added in langchain-core 0.3.0

get_output_schema

get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]

Get a Pydantic model that can be used to validate output to the Runnable.

Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.

This method allows to get an output schema for a specific configuration.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate output.

get_output_jsonschema

get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]

Get a JSON schema that represents the output of the Runnable.

PARAMETER DESCRIPTION
config

A config to use when generating the schema.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the output of the Runnable.

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


runnable = RunnableLambda(add_one)

print(runnable.get_output_jsonschema())

Added in langchain-core 0.3.0

config_schema

config_schema(*, include: Sequence[str] | None = None) -> type[BaseModel]

The type of config this Runnable accepts specified as a Pydantic model.

To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
type[BaseModel]

A Pydantic model that can be used to validate config.

get_config_jsonschema

get_config_jsonschema(*, include: Sequence[str] | None = None) -> dict[str, Any]

Get a JSON schema that represents the config of the Runnable.

PARAMETER DESCRIPTION
include

A list of fields to include in the config schema.

TYPE: Sequence[str] | None DEFAULT: None

RETURNS DESCRIPTION
dict[str, Any]

A JSON schema that represents the config of the Runnable.

Added in langchain-core 0.3.0

get_graph

get_graph(config: RunnableConfig | None = None) -> Graph

Return a graph representation of this Runnable.

get_prompts

get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]

Return a list of prompts used by this Runnable.

__or__

__or__(
    other: Runnable[Any, Other]
    | Callable[[Iterator[Any]], Iterator[Other]]
    | Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
    | Callable[[Any], Other]
    | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]

Runnable "or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

__ror__

__ror__(
    other: Runnable[Other, Any]
    | Callable[[Iterator[Other]], Iterator[Any]]
    | Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
    | Callable[[Other], Any]
    | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]

Runnable "reverse-or" operator.

Compose this Runnable with another object to create a RunnableSequence.

PARAMETER DESCRIPTION
other

Another Runnable or a Runnable-like object.

TYPE: Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]

RETURNS DESCRIPTION
RunnableSerializable[Other, Output]

A new Runnable.

pipe

pipe(
    *others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]

Pipe Runnable objects.

Compose this Runnable with Runnable-like objects to make a RunnableSequence.

Equivalent to RunnableSequence(self, *others) or self | others[0] | ...

Example
from langchain_core.runnables import RunnableLambda


def add_one(x: int) -> int:
    return x + 1


def mul_two(x: int) -> int:
    return x * 2


runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4

sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
PARAMETER DESCRIPTION
*others

Other Runnable or Runnable-like objects to compose

TYPE: Runnable[Any, Other] | Callable[[Any], Other] DEFAULT: ()

name

An optional name for the resulting RunnableSequence.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableSerializable[Input, Other]

A new Runnable.

pick

pick(keys: str | list[str]) -> RunnableSerializable[Any, Any]

Pick keys from the output dict of this Runnable.

Pick a single key

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}

json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]

Pick a list of keys

from typing import Any

import json

from langchain_core.runnables import RunnableLambda, RunnableMap

as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)


def as_bytes(x: Any) -> bytes:
    return bytes(x, "utf-8")


chain = RunnableMap(
    str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)

chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}

json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
PARAMETER DESCRIPTION
keys

A key or list of keys to pick from the output dict.

TYPE: str | list[str]

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

a new Runnable.

assign

Assigns new fields to the dict output of this Runnable.

from langchain_core.language_models.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter

prompt = (
    SystemMessagePromptTemplate.from_template("You are a nice assistant.")
    + "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])

chain: Runnable = prompt | model | {"str": StrOutputParser()}

chain_with_assign = chain.assign(hello=itemgetter("str") | model)

print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
PARAMETER DESCRIPTION
**kwargs

A mapping of keys to Runnable or Runnable-like objects that will be invoked with the entire output dict of this Runnable.

TYPE: Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Any, Any]

A new Runnable.

invoke

invoke(
    input: LanguageModelInput,
    config: RunnableConfig | None = None,
    *,
    stop: list[str] | None = None,
    **kwargs: Any,
) -> str

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable.

The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

ainvoke async

ainvoke(
    input: LanguageModelInput,
    config: RunnableConfig | None = None,
    *,
    stop: list[str] | None = None,
    **kwargs: Any,
) -> str

Transform a single input into an output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

A config to use when invoking the Runnable.

The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | None DEFAULT: None

RETURNS DESCRIPTION
Output

The output of the Runnable.

batch

batch(
    inputs: list[LanguageModelInput],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any,
) -> list[str]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

batch_as_completed

batch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]

Run invoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable.

The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
tuple[int, Output | Exception]

Tuples of the index of the input and the output from the Runnable.

abatch async

abatch(
    inputs: list[LanguageModelInput],
    config: RunnableConfig | list[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any,
) -> list[str]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: list[Input]

config

A config to use when invoking the Runnable.

The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | list[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

RETURNS DESCRIPTION
list[Output]

A list of outputs from the Runnable.

abatch_as_completed async

abatch_as_completed(
    inputs: Sequence[Input],
    config: RunnableConfig | Sequence[RunnableConfig] | None = None,
    *,
    return_exceptions: bool = False,
    **kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]

Run ainvoke in parallel on a list of inputs.

Yields results as they complete.

PARAMETER DESCRIPTION
inputs

A list of inputs to the Runnable.

TYPE: Sequence[Input]

config

A config to use when invoking the Runnable.

The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys.

Please refer to RunnableConfig for more details.

TYPE: RunnableConfig | Sequence[RunnableConfig] | None DEFAULT: None

return_exceptions

Whether to return exceptions instead of raising them.

TYPE: bool DEFAULT: False

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[tuple[int, Output | Exception]]

A tuple of the index of the input and the output from the Runnable.

stream

stream(
    input: LanguageModelInput,
    config: RunnableConfig | None = None,
    *,
    stop: list[str] | None = None,
    **kwargs: Any,
) -> Iterator[str]

Default implementation of stream, which calls invoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

astream async

astream(
    input: LanguageModelInput,
    config: RunnableConfig | None = None,
    *,
    stop: list[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[str]

Default implementation of astream, which calls ainvoke.

Subclasses must override this method if they support streaming output.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Input

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

astream_log async

astream_log(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    diff: bool = True,
    with_streamed_output_list: bool = True,
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

Stream all output from a Runnable, as reported to the callback system.

This includes all inner runs of LLMs, Retrievers, Tools, etc.

Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.

The Jsonpatch ops can be applied in order to construct state.

PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

diff

Whether to yield diffs between each step or the current state.

TYPE: bool DEFAULT: True

with_streamed_output_list

Whether to yield the streamed_output list.

TYPE: bool DEFAULT: True

include_names

Only include logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude logs with these names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude logs with these types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude logs with these tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]

A RunLogPatch or RunLog object.

astream_events async

astream_events(
    input: Any,
    config: RunnableConfig | None = None,
    *,
    version: Literal["v1", "v2"] = "v2",
    include_names: Sequence[str] | None = None,
    include_types: Sequence[str] | None = None,
    include_tags: Sequence[str] | None = None,
    exclude_names: Sequence[str] | None = None,
    exclude_types: Sequence[str] | None = None,
    exclude_tags: Sequence[str] | None = None,
    **kwargs: Any,
) -> AsyncIterator[StreamEvent]

Generate a stream of events.

Use to create an iterator over StreamEvent that provide real-time information about the progress of the Runnable, including StreamEvent from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: The name of the Runnable that generated the event.
  • run_id: Randomly generated ID associated with the given execution of the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
  • parent_ids: The IDs of the parent runnables that generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
  • tags: The tags of the Runnable that generated the event.
  • metadata: The metadata of the Runnable that generated the event.
  • data: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

Note

This reference table is for the v2 version of the schema.

event name chunk input output
on_chat_model_start '[model name]' {"messages": [[SystemMessage, HumanMessage]]}
on_chat_model_stream '[model name]' AIMessageChunk(content="hello")
on_chat_model_end '[model name]' {"messages": [[SystemMessage, HumanMessage]]} AIMessageChunk(content="hello world")
on_llm_start '[model name]' {'input': 'hello'}
on_llm_stream '[model name]' 'Hello'
on_llm_end '[model name]' 'Hello human!'
on_chain_start 'format_docs'
on_chain_stream 'format_docs' 'hello world!, goodbye world!'
on_chain_end 'format_docs' [Document(...)] 'hello world!, goodbye world!'
on_tool_start 'some_tool' {"x": 1, "y": "2"}
on_tool_end 'some_tool' {"x": 1, "y": "2"}
on_retriever_start '[retriever name]' {"query": "hello"}
on_retriever_end '[retriever name]' {"query": "hello"} [Document(...), ..]
on_prompt_start '[template_name]' {"question": "hello"}
on_prompt_end '[template_name]' {"question": "hello"} ChatPromptValue(messages: [SystemMessage, ...])

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

Attribute Type Description
name str A user defined name for the event.
data Any The data associated with the event. This can be anything, though we suggest making it JSON serializable.

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: list[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])


format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are Cat Agent 007"),
        ("human", "{question}"),
    ]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

Example

from langchain_core.runnables import RunnableLambda


async def reverse(s: str) -> str:
    return s[::-1]


chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]
Dispatch custom event
from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
PARAMETER DESCRIPTION
input

The input to the Runnable.

TYPE: Any

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

version

The version of the schema to use, either 'v2' or 'v1'.

Users should use 'v2'.

'v1' is for backwards compatibility and will be deprecated in 0.4.0.

No default will be assigned until the API is stabilized. custom events will only be surfaced in 'v2'.

TYPE: Literal['v1', 'v2'] DEFAULT: 'v2'

include_names

Only include events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

include_types

Only include events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

include_tags

Only include events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

exclude_names

Exclude events from Runnable objects with matching names.

TYPE: Sequence[str] | None DEFAULT: None

exclude_types

Exclude events from Runnable objects with matching types.

TYPE: Sequence[str] | None DEFAULT: None

exclude_tags

Exclude events from Runnable objects with matching tags.

TYPE: Sequence[str] | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

TYPE: Any DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[StreamEvent]

An async stream of StreamEvent.

RAISES DESCRIPTION
NotImplementedError

If the version is not 'v1' or 'v2'.

transform

transform(
    input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]

Transform inputs to outputs.

Default implementation of transform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An iterator of inputs to the Runnable.

TYPE: Iterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
Output

The output of the Runnable.

atransform async

atransform(
    input: AsyncIterator[Input],
    config: RunnableConfig | None = None,
    **kwargs: Any | None,
) -> AsyncIterator[Output]

Transform inputs to outputs.

Default implementation of atransform, which buffers input and calls astream.

Subclasses must override this method if they can start producing output while input is still being generated.

PARAMETER DESCRIPTION
input

An async iterator of inputs to the Runnable.

TYPE: AsyncIterator[Input]

config

The config to use for the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any | None DEFAULT: {}

YIELDS DESCRIPTION
AsyncIterator[Output]

The output of the Runnable.

bind

bind(**kwargs: Any) -> Runnable[Input, Output]

Bind arguments to a Runnable, returning a new Runnable.

Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.

PARAMETER DESCRIPTION
**kwargs

The arguments to bind to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the arguments bound.

Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser

model = ChatOllama(model="llama3.1")

# Without bind
chain = model | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'

with_config

with_config(
    config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]

Bind config to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
config

The config to bind to the Runnable.

TYPE: RunnableConfig | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the Runnable.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the config bound.

with_listeners

with_listeners(
    *,
    on_start: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
    on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
    on_error: Callable[[Run], None]
    | Callable[[Run, RunnableConfig], None]
    | None = None,
) -> Runnable[Input, Output]

Bind lifecycle listeners to a Runnable, returning a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called before the Runnable starts running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_end

Called after the Runnable finishes running, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

on_error

Called if the Runnable throws an error, with the Run object.

TYPE: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time


def test_runnable(time_to_sleep: int):
    time.sleep(time_to_sleep)


def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)


def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)


chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start, on_end=fn_end
)
chain.invoke(2)

with_alisteners

with_alisteners(
    *,
    on_start: AsyncListener | None = None,
    on_end: AsyncListener | None = None,
    on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]

Bind async lifecycle listeners to a Runnable.

Returns a new Runnable.

The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

PARAMETER DESCRIPTION
on_start

Called asynchronously before the Runnable starts running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_end

Called asynchronously after the Runnable finishes running, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

on_error

Called asynchronously if the Runnable throws an error, with the Run object.

TYPE: AsyncListener | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the listeners bound.

Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio


def format_t(timestamp: float) -> str:
    return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()


async def test_runnable(time_to_sleep: int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")


async def fn_start(run_obj: Runnable):
    print(f"on start callback starts at {format_t(time.time())}")
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")


async def fn_end(run_obj: Runnable):
    print(f"on end callback starts at {format_t(time.time())}")
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")


runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start, on_end=fn_end
)


async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))


asyncio.run(concurrent_runs())
# Result:
# on start callback starts at 2025-03-01T07:05:22.875378+00:00
# on start callback starts at 2025-03-01T07:05:22.875495+00:00
# on start callback ends at 2025-03-01T07:05:25.878862+00:00
# on start callback ends at 2025-03-01T07:05:25.878947+00:00
# Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
# Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
# Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
# on end callback starts at 2025-03-01T07:05:27.882360+00:00
# Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
# on end callback starts at 2025-03-01T07:05:28.882428+00:00
# on end callback ends at 2025-03-01T07:05:29.883893+00:00
# on end callback ends at 2025-03-01T07:05:30.884831+00:00

with_types

with_types(
    *, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]

Bind input and output types to a Runnable, returning a new Runnable.

PARAMETER DESCRIPTION
input_type

The input type to bind to the Runnable.

TYPE: type[Input] | None DEFAULT: None

output_type

The output type to bind to the Runnable.

TYPE: type[Output] | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable with the types bound.

with_retry

with_retry(
    *,
    retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
    wait_exponential_jitter: bool = True,
    exponential_jitter_params: ExponentialJitterParams | None = None,
    stop_after_attempt: int = 3,
) -> Runnable[Input, Output]

Create a new Runnable that retries the original Runnable on exceptions.

PARAMETER DESCRIPTION
retry_if_exception_type

A tuple of exception types to retry on.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

wait_exponential_jitter

Whether to add jitter to the wait time between retries.

TYPE: bool DEFAULT: True

stop_after_attempt

The maximum number of attempts to make before giving up.

TYPE: int DEFAULT: 3

exponential_jitter_params

Parameters for tenacity.wait_exponential_jitter. Namely: initial, max, exp_base, and jitter (all float values).

TYPE: ExponentialJitterParams | None DEFAULT: None

RETURNS DESCRIPTION
Runnable[Input, Output]

A new Runnable that retries the original Runnable on exceptions.

Example
from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
        pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert count == 2

map

map() -> Runnable[list[Input], list[Output]]

Return a new Runnable that maps a list of inputs to a list of outputs.

Calls invoke with each input.

RETURNS DESCRIPTION
Runnable[list[Input], list[Output]]

A new Runnable that maps a list of inputs to a list of outputs.

Example
from langchain_core.runnables import RunnableLambda


def _lambda(x: int) -> int:
    return x + 1


runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3]))  # [2, 3, 4]

with_fallbacks

with_fallbacks(
    fallbacks: Sequence[Runnable[Input, Output]],
    *,
    exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
    exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]

Add fallbacks to a Runnable, returning a new Runnable.

The new Runnable will try the original Runnable, and then each fallback in order, upon failures.

PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key.

If None, exceptions will not be passed to fallbacks.

If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

Example
from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
)
print("".join(runnable.stream({})))  # foo bar
PARAMETER DESCRIPTION
fallbacks

A sequence of runnables to try if the original Runnable fails.

TYPE: Sequence[Runnable[Input, Output]]

exceptions_to_handle

A tuple of exception types to handle.

TYPE: tuple[type[BaseException], ...] DEFAULT: (Exception,)

exception_key

If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key.

If None, exceptions will not be passed to fallbacks.

If used, the base Runnable and its fallbacks must accept a dictionary as input.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
RunnableWithFallbacks[Input, Output]

A new Runnable that will try the original Runnable, and then each Fallback in order, upon failures.

as_tool

as_tool(
    args_schema: type[BaseModel] | None = None,
    *,
    name: str | None = None,
    description: str | None = None,
    arg_types: dict[str, type] | None = None,
) -> BaseTool

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema.

Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema.

You can also pass arg_types to just specify the required arguments and their types.

PARAMETER DESCRIPTION
args_schema

The schema for the tool.

TYPE: type[BaseModel] | None DEFAULT: None

name

The name of the tool.

TYPE: str | None DEFAULT: None

description

The description of the tool.

TYPE: str | None DEFAULT: None

arg_types

A dictionary of argument names to types.

TYPE: dict[str, type] | None DEFAULT: None

RETURNS DESCRIPTION
BaseTool

A BaseTool instance.

TypedDict input

from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda


class Args(TypedDict):
    a: int
    b: list[int]


def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema

from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: list[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types

from typing import Any
from langchain_core.runnables import RunnableLambda


def f(x: dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))


runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

str input

from langchain_core.runnables import RunnableLambda


def f(x: str) -> str:
    return x + "a"


def g(x: str) -> str:
    return x + "z"


runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

is_lc_serializable classmethod

is_lc_serializable() -> bool

Is this class serializable?

By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.

RETURNS DESCRIPTION
bool

Whether the class is serializable. Default is False.

get_lc_namespace classmethod

get_lc_namespace() -> list[str]

Get the namespace of the LangChain object.

For example, if the class is langchain.llms.openai.OpenAI, then the namespace is ["langchain", "llms", "openai"]

RETURNS DESCRIPTION
list[str]

The namespace.

lc_id classmethod

lc_id() -> list[str]

Return a unique identifier for this class for serialization purposes.

The unique identifier is a list of strings that describes the path to the object.

For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].

to_json

to_json() -> SerializedConstructor | SerializedNotImplemented

Serialize the Runnable to JSON.

RETURNS DESCRIPTION
SerializedConstructor | SerializedNotImplemented

A JSON-serializable representation of the Runnable.

to_json_not_implemented

to_json_not_implemented() -> SerializedNotImplemented

Serialize a "not implemented" object.

RETURNS DESCRIPTION
SerializedNotImplemented

SerializedNotImplemented.

configurable_fields

configurable_fields(
    **kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

PARAMETER DESCRIPTION
**kwargs

A dictionary of ConfigurableField instances to configure.

TYPE: AnyConfigurableField DEFAULT: {}

RAISES DESCRIPTION
ValueError

If a configuration key is not found in the Runnable.

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the fields configured.

Example

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ", model.invoke("tell me something about chess").content
)

# max_tokens = 200
print(
    "max_tokens_200: ",
    model.with_config(configurable={"output_token_number": 200})
    .invoke("tell me something about chess")
    .content,
)

configurable_alternatives

configurable_alternatives(
    which: ConfigurableField,
    *,
    default_key: str = "default",
    prefix_keys: bool = False,
    **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]

Configure alternatives for Runnable objects that can be set at runtime.

PARAMETER DESCRIPTION
which

The ConfigurableField instance that will be used to select the alternative.

TYPE: ConfigurableField

default_key

The default key to use if no alternative is selected.

TYPE: str DEFAULT: 'default'

prefix_keys

Whether to prefix the keys with the ConfigurableField id.

TYPE: bool DEFAULT: False

**kwargs

A dictionary of keys to Runnable instances or callables that return Runnable instances.

TYPE: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]] DEFAULT: {}

RETURNS DESCRIPTION
RunnableSerializable[Input, Output]

A new Runnable with the alternatives configured.

Example

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI(),
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(configurable={"llm": "openai"})
    .invoke("which organization created you?")
    .content
)

set_verbose

set_verbose(verbose: bool | None) -> bool

If verbose is None, set it.

This allows users to pass in None as verbose to access the global setting.

PARAMETER DESCRIPTION
verbose

The verbosity setting to use.

TYPE: bool | None

RETURNS DESCRIPTION
bool

The verbosity setting to use.

generate_prompt

generate_prompt(
    prompts: list[PromptValue],
    stop: list[str] | None = None,
    callbacks: Callbacks | list[Callbacks] | None = None,
    **kwargs: Any,
) -> LLMResult

Pass a sequence of prompts to the model and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER DESCRIPTION
prompts

List of PromptValue objects.

A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessage objects for chat models).

TYPE: list[PromptValue]

stop

Stop words to use when generating.

Model output is cut off at the first occurrence of any of these substrings.

TYPE: list[str] | None DEFAULT: None

callbacks

Callbacks to pass through.

Used for executing additional functionality, such as logging or streaming, throughout generation.

TYPE: Callbacks DEFAULT: None

**kwargs

Arbitrary additional keyword arguments.

These are usually passed to the model provider API call.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
LLMResult

An LLMResult, which contains a list of candidate Generation objects for each input prompt and additional model provider-specific output.

agenerate_prompt async

agenerate_prompt(
    prompts: list[PromptValue],
    stop: list[str] | None = None,
    callbacks: Callbacks | list[Callbacks] | None = None,
    **kwargs: Any,
) -> LLMResult

Asynchronously pass a sequence of prompts and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER DESCRIPTION
prompts

List of PromptValue objects.

A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessage objects for chat models).

TYPE: list[PromptValue]

stop

Stop words to use when generating.

Model output is cut off at the first occurrence of any of these substrings.

TYPE: list[str] | None DEFAULT: None

callbacks

Callbacks to pass through.

Used for executing additional functionality, such as logging or streaming, throughout generation.

TYPE: Callbacks DEFAULT: None

**kwargs

Arbitrary additional keyword arguments.

These are usually passed to the model provider API call.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
LLMResult

An LLMResult, which contains a list of candidate Generation objects for each input prompt and additional model provider-specific output.

with_structured_output

with_structured_output(
    schema: dict | type, **kwargs: Any
) -> Runnable[LanguageModelInput, dict | BaseModel]

Not implemented on this class.

get_token_ids

get_token_ids(text: str) -> list[int]

Return the ordered IDs of the tokens in a text.

PARAMETER DESCRIPTION
text

The string input to tokenize.

TYPE: str

RETURNS DESCRIPTION
list[int]

A list of IDs corresponding to the tokens in the text, in order they occur in the text.

get_num_tokens_from_messages

get_num_tokens_from_messages(
    messages: list[BaseMessage], tools: Sequence | None = None
) -> int

Get the number of tokens in the messages.

Useful for checking if an input fits in a model's context window.

This should be overridden by model-specific implementations to provide accurate token counts via model-specific tokenizers.

Note

  • The base implementation of get_num_tokens_from_messages ignores tool schemas.
  • The base implementation of get_num_tokens_from_messages adds additional prefixes to messages in represent user roles, which will add to the overall token count. Model-specific implementations may choose to handle this differently.
PARAMETER DESCRIPTION
messages

The message inputs to tokenize.

TYPE: list[BaseMessage]

tools

If provided, sequence of dict, BaseModel, function, or BaseTool objects to be converted to tool schemas.

TYPE: Sequence | None DEFAULT: None

RETURNS DESCRIPTION
int

The sum of the number of tokens across the messages.

generate

generate(
    prompts: list[str],
    stop: list[str] | None = None,
    callbacks: Callbacks | list[Callbacks] | None = None,
    *,
    tags: list[str] | list[list[str]] | None = None,
    metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
    run_name: str | list[str] | None = None,
    run_id: UUID | list[UUID | None] | None = None,
    **kwargs: Any,
) -> LLMResult

Pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER DESCRIPTION
prompts

List of string prompts.

TYPE: list[str]

stop

Stop words to use when generating.

Model output is cut off at the first occurrence of any of these substrings.

TYPE: list[str] | None DEFAULT: None

callbacks

Callbacks to pass through.

Used for executing additional functionality, such as logging or streaming, throughout generation.

TYPE: Callbacks | list[Callbacks] | None DEFAULT: None

tags

List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

TYPE: list[str] | list[list[str]] | None DEFAULT: None

metadata

List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

TYPE: dict[str, Any] | list[dict[str, Any]] | None DEFAULT: None

run_name

List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

TYPE: str | list[str] | None DEFAULT: None

run_id

List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

TYPE: UUID | list[UUID | None] | None DEFAULT: None

**kwargs

Arbitrary additional keyword arguments.

These are usually passed to the model provider API call.

TYPE: Any DEFAULT: {}

RAISES DESCRIPTION
ValueError

If prompts is not a list.

ValueError

If the length of callbacks, tags, metadata, or run_name (if provided) does not match the length of prompts.

RETURNS DESCRIPTION
LLMResult

An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output.

agenerate async

agenerate(
    prompts: list[str],
    stop: list[str] | None = None,
    callbacks: Callbacks | list[Callbacks] | None = None,
    *,
    tags: list[str] | list[list[str]] | None = None,
    metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
    run_name: str | list[str] | None = None,
    run_id: UUID | list[UUID | None] | None = None,
    **kwargs: Any,
) -> LLMResult

Asynchronously pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:

  1. Take advantage of batched calls,
  2. Need more output from the model than just the top generated value,
  3. Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
PARAMETER DESCRIPTION
prompts

List of string prompts.

TYPE: list[str]

stop

Stop words to use when generating.

Model output is cut off at the first occurrence of any of these substrings.

TYPE: list[str] | None DEFAULT: None

callbacks

Callbacks to pass through.

Used for executing additional functionality, such as logging or streaming, throughout generation.

TYPE: Callbacks | list[Callbacks] | None DEFAULT: None

tags

List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

TYPE: list[str] | list[list[str]] | None DEFAULT: None

metadata

List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

TYPE: dict[str, Any] | list[dict[str, Any]] | None DEFAULT: None

run_name

List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

TYPE: str | list[str] | None DEFAULT: None

run_id

List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

TYPE: UUID | list[UUID | None] | None DEFAULT: None

**kwargs

Arbitrary additional keyword arguments.

These are usually passed to the model provider API call.

TYPE: Any DEFAULT: {}

RAISES DESCRIPTION
ValueError

If the length of callbacks, tags, metadata, or run_name (if provided) does not match the length of prompts.

RETURNS DESCRIPTION
LLMResult

An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output.

__str__

__str__() -> str

Return a string representation of the object for printing.

dict

dict(**kwargs: Any) -> dict

Return a dictionary of the LLM.

save

save(file_path: Path | str) -> None

Save the LLM.

PARAMETER DESCRIPTION
file_path

Path to file to save the LLM to.

TYPE: Path | str

RAISES DESCRIPTION
ValueError

If the file path is not a string or Path object.

Example
llm.save(file_path="path/llm.yaml")

__init__

__init__(**kwargs: Any) -> None

Needed for arg validation.

validate_environment

validate_environment() -> Self

Validates params and passes them to google-generativeai package.

get_num_tokens

get_num_tokens(text: str) -> int

Get the number of tokens present in the text.

Useful for checking if an input will fit in a model's context window.

PARAMETER DESCRIPTION
text

The string input to tokenize.

TYPE: str

RETURNS DESCRIPTION
int

The integer number of tokens in the text.