langchain-chroma
¶
Modules:
Name | Description |
---|---|
vectorstores |
This is the langchain_chroma.vectorstores module. |
Classes:
Name | Description |
---|---|
Chroma |
Chroma vector store integration. |
Chroma
¶
Bases: VectorStore
Chroma vector store integration.
Setup
Install chromadb
, langchain-chroma
packages:
.. code-block:: bash
pip install -qU chromadb langchain-chroma
Key init args — indexing params: collection_name: str Name of the collection. embedding_function: Embeddings Embedding function to use.
Key init args — client params: client: Optional[Client] Chroma client to use. client_settings: Optional[chromadb.config.Settings] Chroma client settings. persist_directory: Optional[str] Directory to persist the collection. host: Optional[str] Hostname of a deployed Chroma server. port: Optional[int] Connection port for a deployed Chroma server. Default is 8000. ssl: Optional[bool] Whether to establish an SSL connection with a deployed Chroma server. Default is False. headers: Optional[dict[str, str]] HTTP headers to send to a deployed Chroma server. chroma_cloud_api_key: Optional[str] Chroma Cloud API key. tenant: Optional[str] Tenant ID. Required for Chroma Cloud connections. Default is 'default_tenant' for local Chroma servers. database: Optional[str] Database name. Required for Chroma Cloud connections. Default is 'default_database'.
Instantiate
.. code-block:: python
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
vector_store = Chroma(
collection_name="foo",
embedding_function=OpenAIEmbeddings(),
# other params...
)
Add Documents
.. code-block:: python
from langchain_core.documents import Document
document_1 = Document(page_content="foo", metadata={"baz": "bar"})
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
document_3 = Document(page_content="i will be deleted :(")
documents = [document_1, document_2, document_3]
ids = ["1", "2", "3"]
vector_store.add_documents(documents=documents, ids=ids)
Update Documents
.. code-block:: python
updated_document = Document(
page_content="qux",
metadata={"bar": "baz"},
)
vector_store.update_documents(ids=["1"], documents=[updated_document])
Delete Documents
.. code-block:: python
vector_store.delete(ids=["3"])
Search
.. code-block:: python
results = vector_store.similarity_search(query="thud", k=1)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
*thud[{"baz": "bar"}]
Search with filter
.. code-block:: python
results = vector_store.similarity_search(
query="thud", k=1, filter={"baz": "bar"}
)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
*foo[{"baz": "bar"}]
Search with score
.. code-block:: python
results = vector_store.similarity_search_with_score(query="qux", k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* [SIM=0.000000] qux [{'bar': 'baz', 'baz': 'bar'}]
Async
.. code-block:: python
# add documents
# await vector_store.aadd_documents(documents=documents, ids=ids)
# delete documents
# await vector_store.adelete(ids=["3"])
# search
# results = vector_store.asimilarity_search(query="thud",k=1)
# search with score
results = await vector_store.asimilarity_search_with_score(query="qux", k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* [SIM=0.335463] foo [{'baz': 'bar'}]
Use as Retriever
.. code-block:: python
retriever = vector_store.as_retriever(
search_type="mmr",
search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
)
retriever.invoke("thud")
.. code-block:: python
[Document(metadata={"baz": "bar"}, page_content="thud")]
Methods:
Name | Description |
---|---|
aget_by_ids |
Async get documents by their IDs. |
adelete |
Async delete by vector ID or other criteria. |
aadd_texts |
Async run more texts through the embeddings and add to the vectorstore. |
add_documents |
Add or update documents in the vectorstore. |
aadd_documents |
Async run more documents through the embeddings and add to the vectorstore. |
search |
Return docs most similar to query using a specified search type. |
asearch |
Async return docs most similar to query using a specified search type. |
asimilarity_search_with_score |
Async run similarity search with distance. |
similarity_search_with_relevance_scores |
Return docs and relevance scores in the range [0, 1]. |
asimilarity_search_with_relevance_scores |
Async return docs and relevance scores in the range [0, 1]. |
asimilarity_search |
Async return docs most similar to query. |
asimilarity_search_by_vector |
Async return docs most similar to embedding vector. |
amax_marginal_relevance_search |
Async return docs selected using the maximal marginal relevance. |
amax_marginal_relevance_search_by_vector |
Async return docs selected using the maximal marginal relevance. |
afrom_documents |
Async return VectorStore initialized from documents and embeddings. |
afrom_texts |
Async return VectorStore initialized from texts and embeddings. |
as_retriever |
Return VectorStoreRetriever initialized from this VectorStore. |
__init__ |
Initialize with a Chroma client. |
encode_image |
Get base64 string from image URI. |
fork |
Fork this vector store. |
add_images |
Run more images through the embeddings and add to the vectorstore. |
add_texts |
Run more texts through the embeddings and add to the vectorstore. |
similarity_search |
Run similarity search with Chroma. |
similarity_search_by_vector |
Return docs most similar to embedding vector. |
similarity_search_by_vector_with_relevance_scores |
Return docs most similar to embedding vector and similarity score. |
similarity_search_with_score |
Run similarity search with Chroma with distance. |
similarity_search_with_vectors |
Run similarity search with Chroma with vectors. |
similarity_search_by_image |
Search for similar images based on the given image URI. |
similarity_search_by_image_with_relevance_score |
Search for similar images based on the given image URI. |
max_marginal_relevance_search_by_vector |
Return docs selected using the maximal marginal relevance. |
max_marginal_relevance_search |
Return docs selected using the maximal marginal relevance. |
delete_collection |
Delete the collection. |
reset_collection |
Resets the collection. |
get |
Gets the collection. |
get_by_ids |
Get documents by their IDs. |
update_document |
Update a document in the collection. |
update_documents |
Update a document in the collection. |
from_texts |
Create a Chroma vectorstore from a raw documents. |
from_documents |
Create a Chroma vectorstore from a list of documents. |
delete |
Delete by vector IDs. |
Attributes:
Name | Type | Description |
---|---|---|
embeddings |
Optional[Embeddings]
|
Access the query embedding object. |
aget_by_ids
async
¶
Async get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
Sequence[str]
|
List of ids to retrieve. |
required |
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents. |
Added in version 0.2.11
adelete
async
¶
Async delete by vector ID or other criteria.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
list[str] | None
|
List of ids to delete. If None, delete all. Default is None. |
None
|
**kwargs
|
Any
|
Other keyword arguments that subclasses might use. |
{}
|
Returns:
Type | Description |
---|---|
bool | None
|
Optional[bool]: True if deletion is successful, |
bool | None
|
False otherwise, None if not implemented. |
aadd_texts
async
¶
aadd_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any
) -> list[str]
Async run more texts through the embeddings and add to the vectorstore.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
texts
|
Iterable[str]
|
Iterable of strings to add to the vectorstore. |
required |
metadatas
|
list[dict] | None
|
Optional list of metadatas associated with the texts. Default is None. |
None
|
ids
|
list[str] | None
|
Optional list |
None
|
**kwargs
|
Any
|
vectorstore specific parameters. |
{}
|
Returns:
Type | Description |
---|---|
list[str]
|
List of ids from adding the texts into the vectorstore. |
Raises:
Type | Description |
---|---|
ValueError
|
If the number of metadatas does not match the number of texts. |
ValueError
|
If the number of ids does not match the number of texts. |
add_documents
¶
Add or update documents in the vectorstore.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
documents
|
list[Document]
|
Documents to add to the vectorstore. |
required |
kwargs
|
Any
|
Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence. |
{}
|
Returns:
Type | Description |
---|---|
list[str]
|
List of IDs of the added texts. |
aadd_documents
async
¶
Async run more documents through the embeddings and add to the vectorstore.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
documents
|
list[Document]
|
Documents to add to the vectorstore. |
required |
kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
list[str]
|
List of IDs of the added texts. |
search
¶
Return docs most similar to query using a specified search type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Input text |
required |
search_type
|
str
|
Type of search to perform. Can be "similarity", "mmr", or "similarity_score_threshold". |
required |
**kwargs
|
Any
|
Arguments to pass to the search method. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents most similar to the query. |
Raises:
Type | Description |
---|---|
ValueError
|
If search_type is not one of "similarity", "mmr", or "similarity_score_threshold". |
asearch
async
¶
Async return docs most similar to query using a specified search type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Input text. |
required |
search_type
|
str
|
Type of search to perform. Can be "similarity", "mmr", or "similarity_score_threshold". |
required |
**kwargs
|
Any
|
Arguments to pass to the search method. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents most similar to the query. |
Raises:
Type | Description |
---|---|
ValueError
|
If search_type is not one of "similarity", "mmr", or "similarity_score_threshold". |
asimilarity_search_with_score
async
¶
similarity_search_with_relevance_scores
¶
similarity_search_with_relevance_scores(
query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Input text. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
4
|
**kwargs
|
Any
|
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs. |
{}
|
Returns:
Type | Description |
---|---|
list[tuple[Document, float]]
|
List of Tuples of (doc, similarity_score). |
asimilarity_search_with_relevance_scores
async
¶
asimilarity_search_with_relevance_scores(
query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]
Async return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Input text. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
4
|
**kwargs
|
Any
|
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs |
{}
|
Returns:
Type | Description |
---|---|
list[tuple[Document, float]]
|
List of Tuples of (doc, similarity_score) |
asimilarity_search
async
¶
Async return docs most similar to query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Input text. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
4
|
**kwargs
|
Any
|
Arguments to pass to the search method. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents most similar to the query. |
asimilarity_search_by_vector
async
¶
Async return docs most similar to embedding vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
list[float]
|
Embedding to look up documents similar to. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
4
|
**kwargs
|
Any
|
Arguments to pass to the search method. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents most similar to the query vector. |
amax_marginal_relevance_search
async
¶
amax_marginal_relevance_search(
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any
) -> list[Document]
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Text to look up documents similar to. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
4
|
fetch_k
|
int
|
Number of Documents to fetch to pass to MMR algorithm. Default is 20. |
20
|
lambda_mult
|
float
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. |
0.5
|
**kwargs
|
Any
|
Arguments to pass to the search method. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents selected by maximal marginal relevance. |
amax_marginal_relevance_search_by_vector
async
¶
amax_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any
) -> list[Document]
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
list[float]
|
Embedding to look up documents similar to. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
4
|
fetch_k
|
int
|
Number of Documents to fetch to pass to MMR algorithm. Default is 20. |
20
|
lambda_mult
|
float
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. |
0.5
|
**kwargs
|
Any
|
Arguments to pass to the search method. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents selected by maximal marginal relevance. |
afrom_documents
async
classmethod
¶
afrom_documents(
documents: list[Document],
embedding: Embeddings,
**kwargs: Any
) -> Self
Async return VectorStore initialized from documents and embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
documents
|
list[Document]
|
List of Documents to add to the vectorstore. |
required |
embedding
|
Embeddings
|
Embedding function to use. |
required |
kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
VectorStore |
Self
|
VectorStore initialized from documents and embeddings. |
afrom_texts
async
classmethod
¶
afrom_texts(
texts: list[str],
embedding: Embeddings,
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any
) -> Self
Async return VectorStore initialized from texts and embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
texts
|
list[str]
|
Texts to add to the vectorstore. |
required |
embedding
|
Embeddings
|
Embedding function to use. |
required |
metadatas
|
list[dict] | None
|
Optional list of metadatas associated with the texts. Default is None. |
None
|
ids
|
list[str] | None
|
Optional list of IDs associated with the texts. |
None
|
kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
VectorStore |
Self
|
VectorStore initialized from texts and embeddings. |
as_retriever
¶
as_retriever(**kwargs: Any) -> VectorStoreRetriever
Return VectorStoreRetriever initialized from this VectorStore.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
Any
|
Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that the Retriever should perform. Can be "similarity" (default), "mmr", or "similarity_score_threshold". search_kwargs (Optional[Dict]): Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata |
{}
|
Returns:
Name | Type | Description |
---|---|---|
VectorStoreRetriever |
VectorStoreRetriever
|
Retriever class for VectorStore. |
Examples:
.. code-block:: python
# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
search_type="mmr", search_kwargs={"k": 6, "lambda_mult": 0.25}
)
# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
search_type="mmr", search_kwargs={"k": 5, "fetch_k": 50}
)
# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.8},
)
# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={"k": 1})
# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
search_kwargs={"filter": {"paper_title": "GPT-4 Technical Report"}}
)
__init__
¶
__init__(
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
embedding_function: Optional[Embeddings] = None,
persist_directory: Optional[str] = None,
host: Optional[str] = None,
port: Optional[int] = None,
headers: Optional[dict[str, str]] = None,
chroma_cloud_api_key: Optional[str] = None,
tenant: Optional[str] = None,
database: Optional[str] = None,
client_settings: Optional[Settings] = None,
collection_metadata: Optional[dict] = None,
collection_configuration: Optional[
CreateCollectionConfiguration
] = None,
client: Optional[ClientAPI] = None,
relevance_score_fn: Optional[
Callable[[float], float]
] = None,
create_collection_if_not_exists: Optional[bool] = True,
*,
ssl: bool = False
) -> None
Initialize with a Chroma client.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name
|
str
|
Name of the collection to create. |
_LANGCHAIN_DEFAULT_COLLECTION_NAME
|
embedding_function
|
Optional[Embeddings]
|
Embedding class object. Used to embed texts. |
None
|
persist_directory
|
Optional[str]
|
Directory to persist the collection. |
None
|
host
|
Optional[str]
|
Hostname of a deployed Chroma server. |
None
|
port
|
Optional[int]
|
Connection port for a deployed Chroma server. Default is 8000. |
None
|
ssl
|
bool
|
Whether to establish an SSL connection with a deployed Chroma server. Default is False. |
False
|
headers
|
Optional[dict[str, str]]
|
HTTP headers to send to a deployed Chroma server. |
None
|
chroma_cloud_api_key
|
Optional[str]
|
Chroma Cloud API key. |
None
|
tenant
|
Optional[str]
|
Tenant ID. Required for Chroma Cloud connections. Default is 'default_tenant' for local Chroma servers. |
None
|
database
|
Optional[str]
|
Database name. Required for Chroma Cloud connections. Default is 'default_database'. |
None
|
client_settings
|
Optional[Settings]
|
Chroma client settings |
None
|
collection_metadata
|
Optional[dict]
|
Collection configurations. |
None
|
collection_configuration
|
Optional[CreateCollectionConfiguration]
|
Index configuration for the collection. Defaults to None. |
None
|
client
|
Optional[ClientAPI]
|
Chroma client. Documentation: https://docs.trychroma.com/reference/python/client |
None
|
relevance_score_fn
|
Optional[Callable[[float], float]]
|
Function to calculate relevance score from distance.
Used only in |
None
|
create_collection_if_not_exists
|
Optional[bool]
|
Whether to create collection if it doesn't exist. Defaults to True. |
True
|
__query_collection
¶
__query_collection(
query_texts: Optional[list[str]] = None,
query_embeddings: Optional[list[list[float]]] = None,
n_results: int = 4,
where: Optional[dict[str, str]] = None,
where_document: Optional[dict[str, str]] = None,
**kwargs: Any
) -> Union[list[Document], QueryResult]
Query the chroma collection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query_texts
|
Optional[list[str]]
|
List of query texts. |
None
|
query_embeddings
|
Optional[list[list[float]]]
|
List of query embeddings. |
None
|
n_results
|
int
|
Number of results to return. Defaults to 4. |
4
|
where
|
Optional[dict[str, str]]
|
dict used to filter results by metadata. E.g. {"color" : "red"}. |
None
|
where_document
|
Optional[dict[str, str]]
|
dict used to filter by the document contents. E.g. {"$contains": "hello"}. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to Chroma collection query. |
{}
|
Returns:
Type | Description |
---|---|
Union[list[Document], QueryResult]
|
List of |
Union[list[Document], QueryResult]
|
query_embeddings or query_texts. |
See more: https://docs.trychroma.com/reference/py-collection#query
fork
¶
add_images
¶
add_images(
uris: list[str],
metadatas: Optional[list[dict]] = None,
ids: Optional[list[str]] = None,
) -> list[str]
Run more images through the embeddings and add to the vectorstore.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
uris
|
list[str]
|
File path to the image. |
required |
metadatas
|
Optional[list[dict]]
|
Optional list of metadatas. When querying, you can filter on this metadata. |
None
|
ids
|
Optional[list[str]]
|
Optional list of IDs. (Items without IDs will be assigned UUIDs) |
None
|
Returns:
Type | Description |
---|---|
list[str]
|
List of IDs of the added images. |
Raises:
Type | Description |
---|---|
ValueError
|
When metadata is incorrect. |
add_texts
¶
add_texts(
texts: Iterable[str],
metadatas: Optional[list[dict]] = None,
ids: Optional[list[str]] = None,
**kwargs: Any
) -> list[str]
Run more texts through the embeddings and add to the vectorstore.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
texts
|
Iterable[str]
|
Texts to add to the vectorstore. |
required |
metadatas
|
Optional[list[dict]]
|
Optional list of metadatas. When querying, you can filter on this metadata. |
None
|
ids
|
Optional[list[str]]
|
Optional list of IDs. (Items without IDs will be assigned UUIDs) |
None
|
kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
list[str]
|
List of IDs of the added texts. |
Raises:
Type | Description |
---|---|
ValueError
|
When metadata is incorrect. |
similarity_search
¶
similarity_search(
query: str,
k: int = DEFAULT_K,
filter: Optional[dict[str, str]] = None,
**kwargs: Any
) -> list[Document]
Run similarity search with Chroma.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query text to search for. |
required |
k
|
int
|
Number of results to return. Defaults to 4. |
DEFAULT_K
|
filter
|
Optional[dict[str, str]]
|
Filter by metadata. Defaults to None. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to Chroma collection query. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of documents most similar to the query text. |
similarity_search_by_vector
¶
similarity_search_by_vector(
embedding: list[float],
k: int = DEFAULT_K,
filter: Optional[dict[str, str]] = None,
where_document: Optional[dict[str, str]] = None,
**kwargs: Any
) -> list[Document]
Return docs most similar to embedding vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
list[float]
|
Embedding to look up documents similar to. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
DEFAULT_K
|
filter
|
Optional[dict[str, str]]
|
Filter by metadata. Defaults to None. |
None
|
where_document
|
Optional[dict[str, str]]
|
dict used to filter by the document contents. E.g. {"$contains": "hello"}. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to Chroma collection query. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents most similar to the query vector. |
similarity_search_by_vector_with_relevance_scores
¶
similarity_search_by_vector_with_relevance_scores(
embedding: list[float],
k: int = DEFAULT_K,
filter: Optional[dict[str, str]] = None,
where_document: Optional[dict[str, str]] = None,
**kwargs: Any
) -> list[tuple[Document, float]]
Return docs most similar to embedding vector and similarity score.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
List[float]
|
Embedding to look up documents similar to. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
DEFAULT_K
|
filter
|
Optional[dict[str, str]]
|
Filter by metadata. Defaults to None. |
None
|
where_document
|
Optional[dict[str, str]]
|
dict used to filter by the documents. E.g. {"$contains": "hello"}. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to Chroma collection query. |
{}
|
Returns:
Type | Description |
---|---|
list[tuple[Document, float]]
|
List of documents most similar to the query text and relevance score |
list[tuple[Document, float]]
|
in float for each. Lower score represents more similarity. |
similarity_search_with_score
¶
similarity_search_with_score(
query: str,
k: int = DEFAULT_K,
filter: Optional[dict[str, str]] = None,
where_document: Optional[dict[str, str]] = None,
**kwargs: Any
) -> list[tuple[Document, float]]
Run similarity search with Chroma with distance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query text to search for. |
required |
k
|
int
|
Number of results to return. Defaults to 4. |
DEFAULT_K
|
filter
|
Optional[dict[str, str]]
|
Filter by metadata. Defaults to None. |
None
|
where_document
|
Optional[dict[str, str]]
|
dict used to filter by document contents. E.g. {"$contains": "hello"}. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to Chroma collection query. |
{}
|
Returns:
Type | Description |
---|---|
list[tuple[Document, float]]
|
List of documents most similar to the query text and |
list[tuple[Document, float]]
|
distance in float for each. Lower score represents more similarity. |
similarity_search_with_vectors
¶
similarity_search_with_vectors(
query: str,
k: int = DEFAULT_K,
filter: Optional[dict[str, str]] = None,
where_document: Optional[dict[str, str]] = None,
**kwargs: Any
) -> list[tuple[Document, ndarray]]
Run similarity search with Chroma with vectors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Query text to search for. |
required |
k
|
int
|
Number of results to return. Defaults to 4. |
DEFAULT_K
|
filter
|
Optional[dict[str, str]]
|
Filter by metadata. Defaults to None. |
None
|
where_document
|
Optional[dict[str, str]]
|
dict used to filter by the document contents. E.g. {"$contains": "hello"}. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to Chroma collection query. |
{}
|
Returns:
Type | Description |
---|---|
list[tuple[Document, ndarray]]
|
List of documents most similar to the query text and |
list[tuple[Document, ndarray]]
|
embedding vectors for each. |
similarity_search_by_image
¶
similarity_search_by_image(
uri: str,
k: int = DEFAULT_K,
filter: Optional[dict[str, str]] = None,
**kwargs: Any
) -> list[Document]
Search for similar images based on the given image URI.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
uri
|
str
|
URI of the image to search for. |
required |
k
|
int
|
Number of results to return. Defaults to |
DEFAULT_K
|
filter
|
Optional[Dict[str, str]]
|
Filter by metadata. |
None
|
**kwargs
|
Any
|
Additional arguments to pass to function. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Images most similar to the provided image. |
list[Document]
|
Each element in list is a LangChain Document Object. |
list[Document]
|
The page content is b64 encoded image, metadata is default or |
list[Document]
|
as defined by user. |
Raises:
Type | Description |
---|---|
ValueError
|
If the embedding function does not support image embeddings. |
similarity_search_by_image_with_relevance_score
¶
similarity_search_by_image_with_relevance_score(
uri: str,
k: int = DEFAULT_K,
filter: Optional[dict[str, str]] = None,
**kwargs: Any
) -> list[tuple[Document, float]]
Search for similar images based on the given image URI.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
uri
|
str
|
URI of the image to search for. |
required |
k
|
int
|
Number of results to return. |
DEFAULT_K
|
filter
|
Optional[Dict[str, str]]
|
Filter by metadata. |
None
|
**kwargs
|
Any
|
Additional arguments to pass to function. |
{}
|
Returns:
Type | Description |
---|---|
list[tuple[Document, float]]
|
List[Tuple[Document, float]]: List of tuples containing documents similar |
list[tuple[Document, float]]
|
to the query image and their similarity scores. |
list[tuple[Document, float]]
|
0th element in each tuple is a LangChain Document Object. |
list[tuple[Document, float]]
|
The page content is b64 encoded img, metadata is default or defined by user. |
Raises:
Type | Description |
---|---|
ValueError
|
If the embedding function does not support image embeddings. |
max_marginal_relevance_search_by_vector
¶
max_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = DEFAULT_K,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict[str, str]] = None,
where_document: Optional[dict[str, str]] = None,
**kwargs: Any
) -> list[Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
list[float]
|
Embedding to look up documents similar to. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
DEFAULT_K
|
fetch_k
|
int
|
Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. |
20
|
lambda_mult
|
float
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. |
0.5
|
filter
|
Optional[dict[str, str]]
|
Filter by metadata. Defaults to None. |
None
|
where_document
|
Optional[dict[str, str]]
|
dict used to filter by the document contents. E.g. {"$contains": "hello"}. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to Chroma collection query. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents selected by maximal marginal relevance. |
max_marginal_relevance_search
¶
max_marginal_relevance_search(
query: str,
k: int = DEFAULT_K,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict[str, str]] = None,
where_document: Optional[dict[str, str]] = None,
**kwargs: Any
) -> list[Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
str
|
Text to look up documents similar to. |
required |
k
|
int
|
Number of Documents to return. Defaults to 4. |
DEFAULT_K
|
fetch_k
|
int
|
Number of Documents to fetch to pass to MMR algorithm. |
20
|
lambda_mult
|
float
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. |
0.5
|
filter
|
Optional[dict[str, str]]
|
Filter by metadata. Defaults to None. |
None
|
where_document
|
Optional[dict[str, str]]
|
dict used to filter by the document contents. E.g. {"$contains": "hello"}. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to Chroma collection query. |
{}
|
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents selected by maximal marginal relevance. |
Raises:
Type | Description |
---|---|
ValueError
|
If the embedding function is not provided. |
reset_collection
¶
Resets the collection.
Resets the collection by deleting the collection and recreating an empty one.
get
¶
get(
ids: Optional[Union[str, list[str]]] = None,
where: Optional[Where] = None,
limit: Optional[int] = None,
offset: Optional[int] = None,
where_document: Optional[WhereDocument] = None,
include: Optional[list[str]] = None,
) -> dict[str, Any]
Gets the collection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
Optional[Union[str, list[str]]]
|
The ids of the embeddings to get. Optional. |
None
|
where
|
Optional[Where]
|
A Where type dict used to filter results by.
E.g. |
None
|
limit
|
Optional[int]
|
The number of documents to return. Optional. |
None
|
offset
|
Optional[int]
|
The offset to start returning results from. Useful for paging results with limit. Optional. |
None
|
where_document
|
Optional[WhereDocument]
|
A WhereDocument type dict used to filter by the documents.
E.g. |
None
|
include
|
Optional[list[str]]
|
A list of what to include in the results.
Can contain |
None
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A dict with the keys |
get_by_ids
¶
Get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
Sequence[str]
|
List of ids to retrieve. |
required |
Returns:
Type | Description |
---|---|
list[Document]
|
List of Documents. |
Added in 0.2.1
update_document
¶
update_document(
document_id: str, document: Document
) -> None
Update a document in the collection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
document_id
|
str
|
ID of the document to update. |
required |
document
|
Document
|
Document to update. |
required |
update_documents
¶
Update a document in the collection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
list[str]
|
List of ids of the document to update. |
required |
documents
|
list[Document]
|
List of documents to update. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If the embedding function is not provided. |
from_texts
classmethod
¶
from_texts(
texts: list[str],
embedding: Optional[Embeddings] = None,
metadatas: Optional[list[dict]] = None,
ids: Optional[list[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
persist_directory: Optional[str] = None,
host: Optional[str] = None,
port: Optional[int] = None,
headers: Optional[dict[str, str]] = None,
chroma_cloud_api_key: Optional[str] = None,
tenant: Optional[str] = None,
database: Optional[str] = None,
client_settings: Optional[Settings] = None,
client: Optional[ClientAPI] = None,
collection_metadata: Optional[dict] = None,
collection_configuration: Optional[
CreateCollectionConfiguration
] = None,
*,
ssl: bool = False,
**kwargs: Any
) -> Chroma
Create a Chroma vectorstore from a raw documents.
If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
texts
|
list[str]
|
List of texts to add to the collection. |
required |
collection_name
|
str
|
Name of the collection to create. |
_LANGCHAIN_DEFAULT_COLLECTION_NAME
|
persist_directory
|
Optional[str]
|
Directory to persist the collection. |
None
|
host
|
Optional[str]
|
Hostname of a deployed Chroma server. |
None
|
port
|
Optional[int]
|
Connection port for a deployed Chroma server. Default is 8000. |
None
|
ssl
|
bool
|
Whether to establish an SSL connection with a deployed Chroma server. Default is False. |
False
|
headers
|
Optional[dict[str, str]]
|
HTTP headers to send to a deployed Chroma server. |
None
|
chroma_cloud_api_key
|
Optional[str]
|
Chroma Cloud API key. |
None
|
tenant
|
Optional[str]
|
Tenant ID. Required for Chroma Cloud connections. Default is 'default_tenant' for local Chroma servers. |
None
|
database
|
Optional[str]
|
Database name. Required for Chroma Cloud connections. Default is 'default_database'. |
None
|
embedding
|
Optional[Embeddings]
|
Embedding function. Defaults to None. |
None
|
metadatas
|
Optional[list[dict]]
|
List of metadatas. Defaults to None. |
None
|
ids
|
Optional[list[str]]
|
List of document IDs. Defaults to None. |
None
|
client_settings
|
Optional[Settings]
|
Chroma client settings. |
None
|
client
|
Optional[ClientAPI]
|
Chroma client. Documentation: https://docs.trychroma.com/reference/python/client |
None
|
collection_metadata
|
Optional[dict]
|
Collection configurations. Defaults to None. |
None
|
collection_configuration
|
Optional[CreateCollectionConfiguration]
|
Index configuration for the collection. Defaults to None. |
None
|
kwargs
|
Any
|
Additional keyword arguments to initialize a Chroma client. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
Chroma |
Chroma
|
Chroma vectorstore. |
from_documents
classmethod
¶
from_documents(
documents: list[Document],
embedding: Optional[Embeddings] = None,
ids: Optional[list[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
persist_directory: Optional[str] = None,
host: Optional[str] = None,
port: Optional[int] = None,
headers: Optional[dict[str, str]] = None,
chroma_cloud_api_key: Optional[str] = None,
tenant: Optional[str] = None,
database: Optional[str] = None,
client_settings: Optional[Settings] = None,
client: Optional[ClientAPI] = None,
collection_metadata: Optional[dict] = None,
collection_configuration: Optional[
CreateCollectionConfiguration
] = None,
*,
ssl: bool = False,
**kwargs: Any
) -> Chroma
Create a Chroma vectorstore from a list of documents.
If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name
|
str
|
Name of the collection to create. |
_LANGCHAIN_DEFAULT_COLLECTION_NAME
|
persist_directory
|
Optional[str]
|
Directory to persist the collection. |
None
|
host
|
Optional[str]
|
Hostname of a deployed Chroma server. |
None
|
port
|
Optional[int]
|
Connection port for a deployed Chroma server. Default is 8000. |
None
|
ssl
|
bool
|
Whether to establish an SSL connection with a deployed Chroma server. Default is False. |
False
|
headers
|
Optional[dict[str, str]]
|
HTTP headers to send to a deployed Chroma server. |
None
|
chroma_cloud_api_key
|
Optional[str]
|
Chroma Cloud API key. |
None
|
tenant
|
Optional[str]
|
Tenant ID. Required for Chroma Cloud connections. Default is 'default_tenant' for local Chroma servers. |
None
|
database
|
Optional[str]
|
Database name. Required for Chroma Cloud connections. Default is 'default_database'. |
None
|
ids
|
List of document IDs. Defaults to None. |
required | |
documents
|
list[Document]
|
List of documents to add to the vectorstore. |
required |
embedding
|
Optional[Embeddings]
|
Embedding function. Defaults to None. |
None
|
client_settings
|
Optional[Settings]
|
Chroma client settings. |
None
|
client
|
Optional[ClientAPI]
|
Chroma client. Documentation: https://docs.trychroma.com/reference/python/client |
None
|
collection_metadata
|
Optional[dict]
|
Collection configurations. Defaults to None. |
None
|
collection_configuration
|
Optional[CreateCollectionConfiguration]
|
Index configuration for the collection. Defaults to None. |
None
|
kwargs
|
Any
|
Additional keyword arguments to initialize a Chroma client. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
Chroma |
Chroma
|
Chroma vectorstore. |