Create a CLI-configured agent with flexible options.
This is the main entry point for creating a deepagents CLI agent, usable both internally and from external code (e.g., benchmarking frameworks).
create_cli_agent(
model: str | BaseChatModel,
assistant_id: str,
*,
tools: Sequence[BaseTool | Callable | dict[str, Any]] | None = None,
sandbox: SandboxBackendProtocol | None = None,
sandbox_type: str | None = None,
system_prompt: str | None = None,
auto_approve: bool = False,
enable_memory: bool = True,
enable_skills: bool = True,
enable_shell: bool = True,
checkpointer: BaseCheckpointSaver | None = None
) -> tuple[Pregel, CompositeBackend]| Name | Type | Description |
|---|---|---|
model* | str | BaseChatModel | LLM model to use (e.g., |
assistant_id* | str | Agent identifier for memory/state storage |
tools | Sequence[BaseTool | Callable | dict[str, Any]] | None | Default: NoneAdditional tools to provide to agent |
sandbox | SandboxBackendProtocol | None | Default: NoneOptional sandbox backend for remote execution
(e.g., If |
sandbox_type | str | None | Default: NoneType of sandbox provider
( |
system_prompt | str | None | Default: NoneOverride the default system prompt. If |
auto_approve | bool | Default: FalseIf If |
enable_memory | bool | Default: TrueEnable |
enable_skills | bool | Default: TrueEnable |
enable_shell | bool | Default: TrueEnable shell execution via |
checkpointer | BaseCheckpointSaver | None | Default: NoneOptional checkpointer for session persistence. If |