langchain.js
    Preparing search index...

    Module @langchain/google-genai - v0.2.16

    @langchain/google-genai

    This package contains the LangChain.js integrations for Gemini through their generative-ai SDK.

    npm install @langchain/google-genai @langchain/core
    

    This package, along with the main LangChain package, depends on @langchain/core. If you are using this package with other LangChain packages, you should make sure that all of the packages depend on the same instance of @langchain/core. You can do so by adding appropriate field to your project's package.json like this:

    {
    "name": "your-project",
    "version": "0.0.0",
    "dependencies": {
    "@langchain/core": "^0.3.0",
    "@langchain/google-genai": "^0.0.0"
    },
    "resolutions": {
    "@langchain/core": "^0.3.0"
    },
    "overrides": {
    "@langchain/core": "^0.3.0"
    },
    "pnpm": {
    "overrides": {
    "@langchain/core": "^0.3.0"
    }
    }
    }

    The field you need depends on the package manager you're using, but we recommend adding a field for the common yarn, npm, and pnpm to maximize compatibility.

    This package contains the ChatGoogleGenerativeAI class, which is the recommended way to interface with the Google Gemini series of models.

    To use, install the requirements, and configure your environment.

    export GOOGLE_API_KEY=your-api-key
    

    Then initialize

    import { ChatGoogleGenerativeAI } from "@langchain/google-genai";
    import { HumanMessage } from "@langchain/core/messages";

    const model = new ChatGoogleGenerativeAI({
    model: "gemini-pro",
    maxOutputTokens: 2048,
    });
    const response = await model.invoke(new HumanMessage("Hello world!"));

    Gemini vision model supports image inputs when providing a single chat message. Example:

    pnpm install @langchain/core
    
    import fs from "fs";
    import { ChatGoogleGenerativeAI } from "@langchain/google-genai";
    import { HumanMessage } from "@langchain/core/messages";

    const vision = new ChatGoogleGenerativeAI({
    model: "gemini-pro-vision",
    maxOutputTokens: 2048,
    });
    const image = fs.readFileSync("./hotdog.jpg").toString("base64");
    const input = [
    new HumanMessage({
    content: [
    {
    type: "text",
    text: "Describe the following image.",
    },
    {
    type: "image_url",
    image_url: `data:image/png;base64,${image}`,
    },
    ],
    }),
    ];

    const res = await vision.invoke(input);

    The value of image_url can be any of the following:

    • A public image URL
    • An accessible gcs file (e.g., "gcs://path/to/file.png")
    • A base64 encoded image (e.g., )
    • A PIL image

    This package also adds support for google's embeddings models.

    import { GoogleGenerativeAIEmbeddings } from "@langchain/google-genai";
    import { TaskType } from "@google/generative-ai";

    const embeddings = new GoogleGenerativeAIEmbeddings({
    modelName: "embedding-001", // 768 dimensions
    taskType: TaskType.RETRIEVAL_DOCUMENT,
    title: "Document title",
    });

    const res = await embeddings.embedQuery("OK Google");

    To develop the Google GenAI package, you'll need to follow these instructions:

    pnpm install
    
    pnpm build
    

    Or from the repo root:

    pnpm build --filter @langchain/google-genai
    

    Test files should live within a tests/ file in the src/ folder. Unit tests should end in .test.ts and integration tests should end in .int.test.ts:

    $ pnpm test
    $ pnpm test:int

    Run the linter & formatter to ensure your code is up to standard:

    pnpm lint && pnpm format
    

    If you add a new file to be exported, either import & re-export from src/index.ts, or add it to the exports field in the package.json file and run pnpm build to generate the new entrypoint.

    Classes

    ChatGoogleGenerativeAI
    GoogleGenerativeAIEmbeddings

    Interfaces

    GoogleGenerativeAIChatCallOptions
    GoogleGenerativeAIChatInput
    GoogleGenerativeAIEmbeddingsParams

    Type Aliases

    BaseMessageExamplePair