Ollama chat model integration.
Setup:
Install @langchain/ollama and the Ollama app.
npm install @langchain/ollama
export OLLAMA_BASE_URL="http://127.0.0.1:11434" # Optional; defaults to http://127.0.0.1:11434 if not set
Runtime args can be passed as the second argument to any of the base runnable methods .invoke. .stream, .batch, etc.
They can also be passed via .withConfig, or the second arg in .bindTools, like shown in the examples below:
// When calling `.withConfig`, call options should be passed via the first argument
const llmWithArgsBound = llm.withConfig({
stop: ["\n"],
});
// When calling `.bindTools`, call options should be passed via the second argument
const llmWithTools = llm.bindTools(
[...],
{
stop: ["\n"],
}
);
import { ChatOllama } from '@langchain/ollama';
const llm = new ChatOllama({
model: "llama-3.1:8b",
temperature: 0,
// other params...
});
const input = `Translate "I love programming" into French.`;
// Models also accept a list of chat messages or a formatted prompt
const result = await llm.invoke(input);
console.log(result);
AIMessage {
"content": "The translation of \"I love programming\" into French is:\n\n\"J'adore programmer.\"",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3.1:8b",
"created_at": "2024-08-12T22:12:23.09468Z",
"done_reason": "stop",
"done": true,
"total_duration": 3715571291,
"load_duration": 35244375,
"prompt_eval_count": 19,
"prompt_eval_duration": 3092116000,
"eval_count": 20,
"eval_duration": 585789000
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 19,
"output_tokens": 20,
"total_tokens": 39
}
}
for await (const chunk of await llm.stream(input)) {
console.log(chunk);
}
AIMessageChunk {
"content": "The",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": " translation",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": " of",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": " \"",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": "I",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
...
AIMessageChunk {
"content": "",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": "",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3.1:8b",
"created_at": "2024-08-12T22:13:22.22423Z",
"done_reason": "stop",
"done": true,
"total_duration": 8599883208,
"load_duration": 35975875,
"prompt_eval_count": 19,
"prompt_eval_duration": 7918195000,
"eval_count": 20,
"eval_duration": 643569000
},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 19,
"output_tokens": 20,
"total_tokens": 39
}
}
import { z } from 'zod';
const GetWeather = {
name: "GetWeather",
description: "Get the current weather in a given location",
schema: z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA")
}),
}
const GetPopulation = {
name: "GetPopulation",
description: "Get the current population in a given location",
schema: z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA")
}),
}
const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
const aiMsg = await llmWithTools.invoke(
"Which city is hotter today and which is bigger: LA or NY?"
);
console.log(aiMsg.tool_calls);
[
{
name: 'GetWeather',
args: { location: 'Los Angeles, CA' },
id: '49410cad-2163-415e-bdcd-d26938a9c8c5',
type: 'tool_call'
},
{
name: 'GetPopulation',
args: { location: 'New York, NY' },
id: '39e230e4-63ec-4fae-9df0-21c3abe735ad',
type: 'tool_call'
}
]
import { z } from 'zod';
const Joke = z.object({
setup: z.string().describe("The setup of the joke"),
punchline: z.string().describe("The punchline to the joke"),
rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
}).describe('Joke to tell user.');
const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
console.log(jokeResult);
{
punchline: 'Why did the cat join a band? Because it wanted to be the purr-cussionist!',
rating: 8,
setup: 'A cat walks into a music store and asks the owner...'
}
const aiMsgForMetadata = await llm.invoke(input);
console.log(aiMsgForMetadata.usage_metadata);
{ input_tokens: 19, output_tokens: 20, total_tokens: 39 }
const aiMsgForResponseMetadata = await llm.invoke(input);
console.log(aiMsgForResponseMetadata.response_metadata);
{
model: 'llama3.1:8b',
created_at: '2024-08-12T22:17:42.274795Z',
done_reason: 'stop',
done: true,
total_duration: 6767071209,
load_duration: 31628209,
prompt_eval_count: 19,
prompt_eval_duration: 6124504000,
eval_count: 20,
eval_duration: 608785000
}
The host URL of the Ollama server.
Defaults to OLLAMA_BASE_URL if set.
The async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.
Whether or not to check the model exists on the local machine before
invoking it. If set to true, the model will be pulled if it does not
exist.
Whether to disable streaming.
If streaming is bypassed, then stream() will defer to
invoke().
A path to the module that contains the class, eg. ["langchain", "llms"] Usually should be the same as the entrypoint the class is exported from.
The model to invoke. If the model does not exist, it will be pulled.
Version of AIMessage output format to store in message content.
AIMessage.contentBlocks will lazily parse the contents of content into a
standard format. This flag can be used to additionally store the standard format
as the message content, e.g., for serialization purposes.
.contentBlocks).contentBlocks)You can also set LC_OUTPUT_VERSION as an environment variable to "v1" to
enable this by default.
Whether to print out response text.
Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.
Create a unique cache key for a specific call to a specific language model.
Get the identifying parameters of the LLM.
Default streaming implementation. Subclasses should override this method if they support streaming output.
Helper method to transform an Iterator of Input values into an Iterator of
Output values, with callbacks.
Use this to implement stream() or transform() in Runnable subclasses.
Assigns new fields to the dict output of this runnable. Returns a new runnable.
Convert a runnable to a tool. Return a new instance of RunnableToolLike
which contains the runnable, name, description and schema.
Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.
Bind tool-like objects to this chat model.
Generates chat based on the input messages.
Generates a prompt based on the input prompt values.
Get the number of tokens in the content.
Get the parameters used to invoke the model
Invokes the chat model with a single input.
Pick keys from the dict output of this runnable. Returns a new runnable.
Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.
Download a model onto the local machine.
Stream output in chunks.
Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
Bind config to a Runnable, returning a new Runnable.
Create a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.
Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.
Add retry logic to an existing runnable.
The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.
Implemented as a static method to support loading logic.
Generate a stream of events emitted by the internal steps of the runnable.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).name: string - The name of the runnable that generated the event.run_id: string - Randomly generated ID associated with the given execution of
the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.tags: string[] - The tags of the runnable that generated the event.metadata: Record<string, any> - The metadata of the runnable that generated the event.data: Record<string, any>Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
+----------------------+-----------------------------+------------------------------------------+
| event | input | output/chunk |
+======================+=============================+==========================================+
| on_chat_model_start | {"messages": BaseMessage[]} | |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_stream | | AIMessageChunk("hello") |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_end | {"messages": BaseMessage[]} | AIMessageChunk("hello world") |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_start | {'input': 'hello'} | |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_stream | | 'Hello' |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_end | 'Hello human!' | |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_start | | |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_stream | | "hello world!" |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_end | [Document(...)] | "hello world!, goodbye world!" |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_start | {"x": 1, "y": "2"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_end | | {"x": 1, "y": "2"} |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_start | {"query": "hello"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_end | {"query": "hello"} | [Document(...), ..] |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_start | {"question": "hello"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_end | {"question": "hello"} | ChatPromptValue(messages: BaseMessage[]) |
+----------------------+-----------------------------+------------------------------------------+
The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.
In addition to the standard events above, users can also dispatch custom events.
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
+-----------+------+------------------------------------------------------------+
| Attribute | Type | Description |
+===========+======+============================================================+
| name | str | A user defined name for the event. |
+-----------+------+------------------------------------------------------------+
| data | Any | The data associated with the event. This can be anything. |
+-----------+------+------------------------------------------------------------+
Here's an example:
import { RunnableLambda } from "@langchain/core/runnables";
import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
// Use this import for web environments that don't support "async_hooks"
// and manually pass config to child runs.
// import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";
const slowThing = RunnableLambda.from(async (someInput: string) => {
// Placeholder for some slow operation
await new Promise((resolve) => setTimeout(resolve, 100));
await dispatchCustomEvent("progress_event", {
message: "Finished step 1 of 2",
});
await new Promise((resolve) => setTimeout(resolve, 100));
return "Done";
});
const eventStream = await slowThing.streamEvents("hello world", {
version: "v2",
});
for await (const event of eventStream) {
if (event.event === "on_custom_event") {
console.log(event);
}
}