Integration with a Google Vertex AI LLM using the "@langchain/google-gauth" package for auth.
class VertexAIThe async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.
Maximum number of tokens to generate in the completion. This may include reasoning tokens (for backwards compatibility).
Model to use
Model to use
Alias for model
Available for gemini-1.5-pro.
The output format of the generated candidate text.
Supported MIME types:
text/plain: Text output.application/json: JSON response in the candidates.Sampling temperature to use
Top-k changes how the model selects tokens for output.
A top-k of 1 means the selected token is the most probable among all tokens in the model’s vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature).
Top-p changes how the model selects tokens for output.
Tokens are selected from most probable to least until the sum of their probabilities equals the top-p value.
For example, if tokens A, B, and C have a probability of .3, .2, and .1 and the top-p value is .5, then the model will select either A or B as the next token (using temperature).
Whether to print out response text.
Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.
For some given input string and options, return a string output.
Despite the fact that invoke is overridden below, we still need this
in order to handle public APi calls to generate().
Create a unique cache key for a specific call to a specific language model.
Get the identifying parameters of the LLM.
Default streaming implementation. Subclasses should override this method if they support streaming output.
Assigns new fields to the dict output of this runnable. Returns a new runnable.
Convert a runnable to a tool. Return a new instance of RunnableToolLike
which contains the runnable, name, description and schema.
Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.
Generates chat based on the input messages.
Generates a prompt based on the input prompt values.
Get the number of tokens in the content.
Get the parameters used to invoke the model
Invokes the chat model with a single input.
Pick keys from the dict output of this runnable. Returns a new runnable.
Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.
Stream output in chunks.
Generate a stream of events emitted by the internal steps of the runnable.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).name: string - The name of the runnable that generated the event.run_id: string - Randomly generated ID associated with the given execution of
the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.tags: string[] - The tags of the runnable that generated the event.metadata: Record<string, any> - The metadata of the runnable that generated the event.data: Record<string, any>Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
+----------------------+-----------------------------+------------------------------------------+
| event | input | output/chunk |
+======================+=============================+==========================================+
| on_chat_model_start | {"messages": BaseMessage[]} | |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_stream | | AIMessageChunk("hello") |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_end | {"messages": BaseMessage[]} | AIMessageChunk("hello world") |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_start | {'input': 'hello'} | |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_stream | | 'Hello' |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_end | 'Hello human!' | |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_start | | |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_stream | | "hello world!" |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_end | [Document(...)] | "hello world!, goodbye world!" |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_start | {"x": 1, "y": "2"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_end | | {"x": 1, "y": "2"} |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_start | {"query": "hello"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_end | {"query": "hello"} | [Document(...), ..] |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_start | {"question": "hello"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_end | {"question": "hello"} | ChatPromptValue(messages: BaseMessage[]) |
+----------------------+-----------------------------+------------------------------------------+
The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.
In addition to the standard events above, users can also dispatch custom events.
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
+-----------+------+------------------------------------------------------------+
| Attribute | Type | Description |
+===========+======+============================================================+
| name | str | A user defined name for the event. |
+-----------+------+------------------------------------------------------------+
| data | Any | The data associated with the event. This can be anything. |
+-----------+------+------------------------------------------------------------+
Here's an example:
import { RunnableLambda } from "@langchain/core/runnables";
import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
// Use this import for web environments that don't support "async_hooks"
// and manually pass config to child runs.
// import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";
const slowThing = RunnableLambda.from(async (someInput: string) => {
// Placeholder for some slow operation
await new Promise((resolve) => setTimeout(resolve, 100));
await dispatchCustomEvent("progress_event", {
message: "Finished step 1 of 2",
});
await new Promise((resolve) => setTimeout(resolve, 100));
return "Done";
});
const eventStream = await slowThing.streamEvents("hello world", {
version: "v2",
});
for await (const event of eventStream) {
if (event.event === "on_custom_event") {
console.log(event);
}
}Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
Bind config to a Runnable, returning a new Runnable.
Create a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.
Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.
Add retry logic to an existing runnable.