Integration for Cohere chat models.
Setup:
Install @langchain/cohere and set a environment variable called COHERE_API_KEY.
npm install @langchain/cohere
export COHERE_API_KEY="your-api-key"
Runtime args can be passed as the second argument to any of the base runnable methods .invoke. .stream, .batch, etc.
They can also be passed via .withConfig, or the second arg in .bindTools, like shown in the examples below:
// When calling `.withConfig`, call options should be passed via the first argument
const llmWithArgsBound = llm.withConfig({
stop: ["\n"],
tools: [...],
});
// When calling `.bindTools`, call options should be passed via the second argument
const llmWithTools = llm.bindTools(
[...],
{
stop: ["\n"],
}
);
import { ChatCohere } from '@langchain/cohere';
const llm = new ChatCohere({
model: "command-r-plus",
temperature: 0,
// other params...
});
const input = `Translate "I love programming" into French.`;
// Models also accept a list of chat messages or a formatted prompt
const result = await llm.invoke(input);
console.log(result);
AIMessage {
"content": "\"J'adore programmer.\"",
"additional_kwargs": {
...
},
"response_metadata": {
"estimatedTokenUsage": {
"completionTokens": 6,
"promptTokens": 75,
"totalTokens": 81
},
"response_id": "54cebd43-737f-458b-bff4-01b220eaf373",
"generationId": "48a567da-0f88-4606-bba6-becbeee464bd",
"chatHistory": [
{
"role": "USER",
"message": "Translate \"I love programming\" into French."
},
{
"role": "CHATBOT",
"message": "\"J'adore programmer.\""
}
],
"finishReason": "COMPLETE",
"meta": {
"apiVersion": {
"version": "1"
},
"billedUnits": {
"inputTokens": 9,
"outputTokens": 6
},
"tokens": {
"inputTokens": 75,
"outputTokens": 6
}
}
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 75,
"output_tokens": 6,
"total_tokens": 81
}
}
for await (const chunk of await llm.stream(input)) {
console.log(chunk);
}
AIMessageChunk {
"content": "",
"additional_kwargs": {
"eventType": "stream-start",
"is_finished": false,
"generationId": "d62c8989-8af5-4357-af79-4ea8e6eb2baa"
},
"response_metadata": {
"eventType": "stream-start",
"is_finished": false,
"generationId": "d62c8989-8af5-4357-af79-4ea8e6eb2baa"
},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": "\"",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": "J",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": "'",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": "adore",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": " programmer",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": ".\"",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": []
}
AIMessageChunk {
"content": "",
"additional_kwargs": {
"eventType": "stream-end"
},
"response_metadata": {
"eventType": "stream-end",
"response_id": "687f94a6-13b7-4c2c-98be-9ca5573c722f",
"text": "\"J'adore programmer.\"",
"generationId": "d62c8989-8af5-4357-af79-4ea8e6eb2baa",
"chatHistory": [
{
"role": "USER",
"message": "Translate \"I love programming\" into French."
},
{
"role": "CHATBOT",
"message": "\"J'adore programmer.\""
}
],
"finishReason": "COMPLETE",
"meta": {
"apiVersion": {
"version": "1"
},
"billedUnits": {
"inputTokens": 9,
"outputTokens": 6
},
"tokens": {
"inputTokens": 75,
"outputTokens": 6
}
}
},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 75,
"output_tokens": 6,
"total_tokens": 81
}
}
import { AIMessageChunk } from '@langchain/core/messages';
import { concat } from '@langchain/core/utils/stream';
const stream = await llm.stream(input);
let full: AIMessageChunk | undefined;
for await (const chunk of stream) {
full = !full ? chunk : concat(full, chunk);
}
console.log(full);
AIMessageChunk {
"content": "\"J'adore programmer.\"",
"additional_kwargs": {
...
},
"response_metadata": {
"is_finished": false,
"generationId": "303e0215-96f4-4da5-8c2a-10da3840afce303e0215-96f4-4da5-8c2a-10da3840afce",
"response_id": "6a8cb7ef-f1b9-44f6-a1df-67aa506d3f0f",
"text": "\"J'adore programmer.\"",
"chatHistory": [
{
"role": "USER",
"message": "Translate \"I love programming\" into French."
},
{
"role": "CHATBOT",
"message": "\"J'adore programmer.\""
}
],
"finishReason": "COMPLETE",
"meta": {
"apiVersion": {
"version": "1"
},
"billedUnits": {
"inputTokens": 9,
"outputTokens": 6
},
"tokens": {
"inputTokens": 75,
"outputTokens": 6
}
}
},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 75,
"output_tokens": 6,
"total_tokens": 81
}
}
import { z } from 'zod';
const GetWeather = {
name: "GetWeather",
description: "Get the current weather in a given location",
schema: z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA")
}),
}
const GetPopulation = {
name: "GetPopulation",
description: "Get the current population in a given location",
schema: z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA")
}),
}
const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
const aiMsg = await llmWithTools.invoke(
"Which city is hotter today and which is bigger: LA or NY?"
);
console.log(aiMsg.tool_calls);
[
{
name: 'GetWeather',
args: { location: 'LA' },
id: 'ce8076ee-2ed3-429d-938c-14f3218c',
type: 'tool_call'
},
{
name: 'GetWeather',
args: { location: 'NY' },
id: '23d1a96e-3a2c-46f4-9d9e-cccd02c6',
type: 'tool_call'
},
{
name: 'GetPopulation',
args: { location: 'LA' },
id: '2bf9d627-310f-46ff-93a9-86baeae9',
type: 'tool_call'
},
{
name: 'GetPopulation',
args: { location: 'NY' },
id: 'c95e6ac0-ee9b-48de-86b2-12548fd1',
type: 'tool_call'
}
]
import { z } from 'zod';
const Joke = z.object({
setup: z.string().describe("The setup of the joke"),
punchline: z.string().describe("The punchline to the joke"),
rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
}).describe('Joke to tell user.');
const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
console.log(jokeResult);
{
punchline: 'Because she wanted to be a first-aid kit.',
rating: 5,
setup: 'Why did the cat join the Red Cross?'
}
const aiMsgForMetadata = await llm.invoke(input);
console.log(aiMsgForMetadata.usage_metadata);
{ input_tokens: 75, output_tokens: 6, total_tokens: 81 }
const aiMsgForResponseMetadata = await llm.invoke(input);
console.log(aiMsgForResponseMetadata.response_metadata);
{
estimatedTokenUsage: { completionTokens: 6, promptTokens: 75, totalTokens: 81 },
response_id: 'a688ad65-4db2-4a7a-b6aa-124aa2410319',
generationId: 'ee259727-18c5-43f7-b9bd-a2a60c0c040b',
chatHistory: [
{
role: 'USER',
message: 'Translate "I love programming" into French.'
},
{ role: 'CHATBOT', message: `"J'adore programmer."` }
],
finishReason: 'COMPLETE',
meta: {
apiVersion: { version: '1' },
billedUnits: { inputTokens: 9, outputTokens: 6 },
tokens: { inputTokens: 75, outputTokens: 6 }
}
}
The async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.
The CohereClient instance to use. Superseeds apiKey
A path to the module that contains the class, eg. ["langchain", "llms"] Usually should be the same as the entrypoint the class is exported from.
The name of the model to use.
Whether or not to stream the response.
Whether or not to include token usage when streaming.
This will include an extra chunk at the end of the stream
with eventType: "stream-end" and the token usage in
usage_metadata.
What sampling temperature to use, between 0.0 and 2.0. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
Whether to print out response text.
Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.
Create a unique cache key for a specific call to a specific language model.
Get the identifying parameters of the LLM.
Default streaming implementation. Subclasses should override this method if they support streaming output.
Helper method to transform an Iterator of Input values into an Iterator of
Output values, with callbacks.
Use this to implement stream() or transform() in Runnable subclasses.
Assigns new fields to the dict output of this runnable. Returns a new runnable.
Convert a runnable to a tool. Return a new instance of RunnableToolLike
which contains the runnable, name, description and schema.
Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.
Bind tool-like objects to this chat model.
Generates chat based on the input messages.
Generates a prompt based on the input prompt values.
Get the number of tokens in the content.
Get the parameters used to invoke the model
Invokes the chat model with a single input.
Pick keys from the dict output of this runnable. Returns a new runnable.
Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.
Stream output in chunks.
Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
Bind config to a Runnable, returning a new Runnable.
Create a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.
Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.
Add retry logic to an existing runnable.
The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.
Implemented as a static method to support loading logic.
Generate a stream of events emitted by the internal steps of the runnable.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).name: string - The name of the runnable that generated the event.run_id: string - Randomly generated ID associated with the given execution of
the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.tags: string[] - The tags of the runnable that generated the event.metadata: Record<string, any> - The metadata of the runnable that generated the event.data: Record<string, any>Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
+----------------------+-----------------------------+------------------------------------------+
| event | input | output/chunk |
+======================+=============================+==========================================+
| on_chat_model_start | {"messages": BaseMessage[]} | |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_stream | | AIMessageChunk("hello") |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_end | {"messages": BaseMessage[]} | AIMessageChunk("hello world") |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_start | {'input': 'hello'} | |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_stream | | 'Hello' |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_end | 'Hello human!' | |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_start | | |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_stream | | "hello world!" |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_end | [Document(...)] | "hello world!, goodbye world!" |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_start | {"x": 1, "y": "2"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_end | | {"x": 1, "y": "2"} |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_start | {"query": "hello"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_end | {"query": "hello"} | [Document(...), ..] |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_start | {"question": "hello"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_end | {"question": "hello"} | ChatPromptValue(messages: BaseMessage[]) |
+----------------------+-----------------------------+------------------------------------------+
The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.
In addition to the standard events above, users can also dispatch custom events.
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
+-----------+------+------------------------------------------------------------+
| Attribute | Type | Description |
+===========+======+============================================================+
| name | str | A user defined name for the event. |
+-----------+------+------------------------------------------------------------+
| data | Any | The data associated with the event. This can be anything. |
+-----------+------+------------------------------------------------------------+
Here's an example:
import { RunnableLambda } from "@langchain/core/runnables";
import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
// Use this import for web environments that don't support "async_hooks"
// and manually pass config to child runs.
// import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";
const slowThing = RunnableLambda.from(async (someInput: string) => {
// Placeholder for some slow operation
await new Promise((resolve) => setTimeout(resolve, 100));
await dispatchCustomEvent("progress_event", {
message: "Finished step 1 of 2",
});
await new Promise((resolve) => setTimeout(resolve, 100));
return "Done";
});
const eventStream = await slowThing.streamEvents("hello world", {
version: "v2",
});
for await (const event of eventStream) {
if (event.event === "on_custom_event") {
console.log(event);
}
}