langchain.js
    Preparing search index...

    Configuration for indexing documents for semantic search in the store.

    This configures how documents are embedded and indexed for vector similarity search.

    interface IndexConfig {
        dims: number;
        embeddings: Embeddings;
        fields?: string[];
    }
    Index

    Properties

    dims: number

    Number of dimensions in the embedding vectors.

    Common embedding model dimensions:

    • OpenAI text-embedding-3-large: 256, 1024, or 3072
    • OpenAI text-embedding-3-small: 512 or 1536
    • OpenAI text-embedding-ada-002: 1536
    • Cohere embed-english-v3.0: 1024
    • Cohere embed-english-light-v3.0: 384
    • Cohere embed-multilingual-v3.0: 1024
    • Cohere embed-multilingual-light-v3.0: 384
    embeddings: Embeddings

    The embeddings model to use for generating vectors. This should be a LangChain Embeddings implementation.

    fields?: string[]

    Fields to extract text from for embedding generation.

    Path syntax supports:

    • Simple field access: "field"
    • Nested fields: "metadata.title"
    • Array indexing:
      • All elements: "chapters[*].content"
      • Specific index: "authors[0].name"
      • Last element: "array[-1]"
    ["$"] Embeds the entire document as one vector