langchain.js
    Preparing search index...

    Interface ChatMessageFields<TStructure>

    interface ChatMessageFields<
        TStructure extends MessageStructure = MessageStructure,
    > {
        additional_kwargs?: {
            function_call?: FunctionCall;
            tool_calls?: OpenAIToolCall[];
            [key: string]: unknown;
        };
        content?: $InferMessageContent<TStructure, "generic">;
        contentBlocks?: ContentBlock.Standard[];
        id?: string;
        name?: string;
        response_metadata?: Partial<$InferResponseMetadata<TStructure, "generic">>;
        role: string;
    }

    Type Parameters

    Hierarchy (View Summary)

    Implemented by

    Index

    Properties

    additional_kwargs?: {
        function_call?: FunctionCall;
        tool_calls?: OpenAIToolCall[];
        [key: string]: unknown;
    }

    Type Declaration

    • [key: string]: unknown
    • Optionalfunction_call?: FunctionCall

      Use "tool_calls" field on AIMessages instead

    • Optionaltool_calls?: OpenAIToolCall[]

      Use "tool_calls" field on AIMessages instead

    content?: $InferMessageContent<TStructure, "generic">
    contentBlocks?: ContentBlock.Standard[]
    id?: string

    Unique identifier for this message

    name?: string

    An optional name for the message participant.

    This property is primarily used to:

    1. Identify agent roles in multi-agent systems: When multiple agents collaborate, setting name helps distinguish which agent produced a message, preventing confusion about who said what.

    2. Pass participant names to model providers: Some providers (notably OpenAI, e.g. see OpenAI Chat Completions API) use this field to differentiate between participants with the same role. For example, when using OpenAI's Chat Completions API, the name is included in the message payload sent to the model.

    // Setting name on an AIMessage to identify the agent
    const message = new AIMessage({
    content: "I'll handle the calendar scheduling.",
    name: "calendar_agent"
    });

    // In a multi-agent system, this helps track message origins
    const researcherMessage = new AIMessage({
    content: "Here are the findings...",
    name: "researcher"
    });
    const writerMessage = new AIMessage({
    content: "I've drafted the report.",
    name: "writer"
    });
    response_metadata?: Partial<$InferResponseMetadata<TStructure, "generic">>
    role: string