Optional
criterionOptional
evaluationThe name of the evaluation.
LLM Wrapper to use
Optional
llmKwargs to pass to LLM
Optional
memoryKey to use for output, defaults to text
Prompt object to use
Optional
skipOptional
skipReturn the string type key uniquely identifying this class of chain.
Protected
_Run the core logic of this chain and add to output if desired.
Wraps _call and handles memory.
Optional
config: anyOptional
reference: stringGet the agent trajectory as a formatted string.
The agent trajectory.
The formatted agent trajectory.
Invoke the chain with the provided input and returns the output.
Input values for the chain run.
Optional
options: anyPromise that resolves with the output of the chain run.
Static
deserializeLoad a chain from a json-like object describing it.
Static
fromCreate a new TrajectoryEvalChain.
Optional
agentTools: StructuredToolInterface[]The tools used by the agent.
Optional
chainOptions: Partial<The options for the chain.
Static
lc_Static
resolveOptional
prompt: anyOptional
agentTools: StructuredToolInterface[]Static
toolsGet the description of the agent tools.
The description of the agent tools.
A chain for evaluating ReAct style agents.
This chain is used to evaluate ReAct style agents by reasoning about the sequence of actions taken and their outcomes.