langchain.js
    Preparing search index...

    Class ChatOpenAI<CallOptions>

    OpenAI chat model integration.

    To use with Azure, import the AzureChatOpenAI class.

    Setup: Install @langchain/openai and set an environment variable named OPENAI_API_KEY.

    npm install @langchain/openai
    export OPENAI_API_KEY="your-api-key"

    Runtime args can be passed as the second argument to any of the base runnable methods .invoke. .stream, .batch, etc. They can also be passed via .withConfig, or the second arg in .bindTools, like shown in the examples below:

    // When calling `.withConfig`, call options should be passed via the first argument
    const llmWithArgsBound = llm.withConfig({
    stop: ["\n"],
    tools: [...],
    });

    // When calling `.bindTools`, call options should be passed via the second argument
    const llmWithTools = llm.bindTools(
    [...],
    {
    tool_choice: "auto",
    }
    );
    Instantiate
    import { ChatOpenAI } from '@langchain/openai';

    const llm = new ChatOpenAI({
    model: "gpt-4o-mini",
    temperature: 0,
    maxTokens: undefined,
    timeout: undefined,
    maxRetries: 2,
    // apiKey: "...",
    // baseUrl: "...",
    // organization: "...",
    // other params...
    });

    Invoking
    const input = `Translate "I love programming" into French.`;

    // Models also accept a list of chat messages or a formatted prompt
    const result = await llm.invoke(input);
    console.log(result);
    AIMessage {
      "id": "chatcmpl-9u4Mpu44CbPjwYFkTbeoZgvzB00Tz",
      "content": "J'adore la programmation.",
      "response_metadata": {
        "tokenUsage": {
          "completionTokens": 5,
          "promptTokens": 28,
          "totalTokens": 33
        },
        "finish_reason": "stop",
        "system_fingerprint": "fp_3aa7262c27"
      },
      "usage_metadata": {
        "input_tokens": 28,
        "output_tokens": 5,
        "total_tokens": 33
      }
    }
    

    Streaming Chunks
    for await (const chunk of await llm.stream(input)) {
    console.log(chunk);
    }
    AIMessageChunk {
      "id": "chatcmpl-9u4NWB7yUeHCKdLr6jP3HpaOYHTqs",
      "content": ""
    }
    AIMessageChunk {
      "content": "J"
    }
    AIMessageChunk {
      "content": "'adore"
    }
    AIMessageChunk {
      "content": " la"
    }
    AIMessageChunk {
      "content": " programmation",,
    }
    AIMessageChunk {
      "content": ".",,
    }
    AIMessageChunk {
      "content": "",
      "response_metadata": {
        "finish_reason": "stop",
        "system_fingerprint": "fp_c9aa9c0491"
      },
    }
    AIMessageChunk {
      "content": "",
      "usage_metadata": {
        "input_tokens": 28,
        "output_tokens": 5,
        "total_tokens": 33
      }
    }
    

    Aggregate Streamed Chunks
    import { AIMessageChunk } from '@langchain/core/messages';
    import { concat } from '@langchain/core/utils/stream';

    const stream = await llm.stream(input);
    let full: AIMessageChunk | undefined;
    for await (const chunk of stream) {
    full = !full ? chunk : concat(full, chunk);
    }
    console.log(full);
    AIMessageChunk {
      "id": "chatcmpl-9u4PnX6Fy7OmK46DASy0bH6cxn5Xu",
      "content": "J'adore la programmation.",
      "response_metadata": {
        "prompt": 0,
        "completion": 0,
        "finish_reason": "stop",
      },
      "usage_metadata": {
        "input_tokens": 28,
        "output_tokens": 5,
        "total_tokens": 33
      }
    }
    

    Bind tools
    import { z } from 'zod';

    const GetWeather = {
    name: "GetWeather",
    description: "Get the current weather in a given location",
    schema: z.object({
    location: z.string().describe("The city and state, e.g. San Francisco, CA")
    }),
    }

    const GetPopulation = {
    name: "GetPopulation",
    description: "Get the current population in a given location",
    schema: z.object({
    location: z.string().describe("The city and state, e.g. San Francisco, CA")
    }),
    }

    const llmWithTools = llm.bindTools(
    [GetWeather, GetPopulation],
    {
    // strict: true // enforce tool args schema is respected
    }
    );
    const aiMsg = await llmWithTools.invoke(
    "Which city is hotter today and which is bigger: LA or NY?"
    );
    console.log(aiMsg.tool_calls);
    [
      {
        name: 'GetWeather',
        args: { location: 'Los Angeles, CA' },
        type: 'tool_call',
        id: 'call_uPU4FiFzoKAtMxfmPnfQL6UK'
      },
      {
        name: 'GetWeather',
        args: { location: 'New York, NY' },
        type: 'tool_call',
        id: 'call_UNkEwuQsHrGYqgDQuH9nPAtX'
      },
      {
        name: 'GetPopulation',
        args: { location: 'Los Angeles, CA' },
        type: 'tool_call',
        id: 'call_kL3OXxaq9OjIKqRTpvjaCH14'
      },
      {
        name: 'GetPopulation',
        args: { location: 'New York, NY' },
        type: 'tool_call',
        id: 'call_s9KQB1UWj45LLGaEnjz0179q'
      }
    ]
    

    Structured Output
    import { z } from 'zod';

    const Joke = z.object({
    setup: z.string().describe("The setup of the joke"),
    punchline: z.string().describe("The punchline to the joke"),
    rating: z.number().nullable().describe("How funny the joke is, from 1 to 10")
    }).describe('Joke to tell user.');

    const structuredLlm = llm.withStructuredOutput(Joke, {
    name: "Joke",
    strict: true, // Optionally enable OpenAI structured outputs
    });
    const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
    console.log(jokeResult);
    {
      setup: 'Why was the cat sitting on the computer?',
      punchline: 'Because it wanted to keep an eye on the mouse!',
      rating: 7
    }
    

    JSON Object Response Format
    const jsonLlm = llm.withConfig({ response_format: { type: "json_object" } });
    const jsonLlmAiMsg = await jsonLlm.invoke(
    "Return a JSON object with key 'randomInts' and a value of 10 random ints in [0-99]"
    );
    console.log(jsonLlmAiMsg.content);
    {
      "randomInts": [23, 87, 45, 12, 78, 34, 56, 90, 11, 67]
    }
    

    Multimodal
    import { HumanMessage } from '@langchain/core/messages';

    const imageUrl = "https://example.com/image.jpg";
    const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());
    const base64Image = Buffer.from(imageData).toString('base64');

    const message = new HumanMessage({
    content: [
    { type: "text", text: "describe the weather in this image" },
    {
    type: "image_url",
    image_url: { url: `data:image/jpeg;base64,${base64Image}` },
    },
    ]
    });

    const imageDescriptionAiMsg = await llm.invoke([message]);
    console.log(imageDescriptionAiMsg.content);
    The weather in the image appears to be clear and sunny. The sky is mostly blue with a few scattered white clouds, indicating fair weather. The bright sunlight is casting shadows on the green, grassy hill, suggesting it is a pleasant day with good visibility. There are no signs of rain or stormy conditions.
    

    Usage Metadata
    const aiMsgForMetadata = await llm.invoke(input);
    console.log(aiMsgForMetadata.usage_metadata);
    { input_tokens: 28, output_tokens: 5, total_tokens: 33 }
    

    Logprobs
    const logprobsLlm = new ChatOpenAI({ model: "gpt-4o-mini", logprobs: true });
    const aiMsgForLogprobs = await logprobsLlm.invoke(input);
    console.log(aiMsgForLogprobs.response_metadata.logprobs);
    {
      content: [
        {
          token: 'J',
          logprob: -0.000050616763,
          bytes: [Array],
          top_logprobs: []
        },
        {
          token: "'",
          logprob: -0.01868736,
          bytes: [Array],
          top_logprobs: []
        },
        {
          token: 'ad',
          logprob: -0.0000030545007,
          bytes: [Array],
          top_logprobs: []
        },
        { token: 'ore', logprob: 0, bytes: [Array], top_logprobs: [] },
        {
          token: ' la',
          logprob: -0.515404,
          bytes: [Array],
          top_logprobs: []
        },
        {
          token: ' programm',
          logprob: -0.0000118755715,
          bytes: [Array],
          top_logprobs: []
        },
        { token: 'ation', logprob: 0, bytes: [Array], top_logprobs: [] },
        {
          token: '.',
          logprob: -0.0000037697225,
          bytes: [Array],
          top_logprobs: []
        }
      ],
      refusal: null
    }
    

    Response Metadata
    const aiMsgForResponseMetadata = await llm.invoke(input);
    console.log(aiMsgForResponseMetadata.response_metadata);
    {
      tokenUsage: { completionTokens: 5, promptTokens: 28, totalTokens: 33 },
      finish_reason: 'stop',
      system_fingerprint: 'fp_3aa7262c27'
    }
    

    JSON Schema Structured Output
    const llmForJsonSchema = new ChatOpenAI({
    model: "gpt-4o-2024-08-06",
    }).withStructuredOutput(
    z.object({
    command: z.string().describe("The command to execute"),
    expectedOutput: z.string().describe("The expected output of the command"),
    options: z
    .array(z.string())
    .describe("The options you can pass to the command"),
    }),
    {
    method: "jsonSchema",
    strict: true, // Optional when using the `jsonSchema` method
    }
    );

    const jsonSchemaRes = await llmForJsonSchema.invoke(
    "What is the command to list files in a directory?"
    );
    console.log(jsonSchemaRes);
    {
      command: 'ls',
      expectedOutput: 'A list of files and subdirectories within the specified directory.',
      options: [
        '-a: include directory entries whose names begin with a dot (.).',
        '-l: use a long listing format.',
        '-h: with -l, print sizes in human readable format (e.g., 1K, 234M, 2G).',
        '-t: sort by time, newest first.',
        '-r: reverse order while sorting.',
        '-S: sort by file size, largest first.',
        '-R: list subdirectories recursively.'
      ]
    }
    

    Audio Outputs
    import { ChatOpenAI } from "@langchain/openai";

    const modelWithAudioOutput = new ChatOpenAI({
    model: "gpt-4o-audio-preview",
    // You may also pass these fields to `.withConfig` as a call argument.
    modalities: ["text", "audio"], // Specifies that the model should output audio.
    audio: {
    voice: "alloy",
    format: "wav",
    },
    });

    const audioOutputResult = await modelWithAudioOutput.invoke("Tell me a joke about cats.");
    const castMessageContent = audioOutputResult.content[0] as Record<string, any>;

    console.log({
    ...castMessageContent,
    data: castMessageContent.data.slice(0, 100) // Sliced for brevity
    })
    {
      id: 'audio_67117718c6008190a3afad3e3054b9b6',
      data: 'UklGRqYwBgBXQVZFZm10IBAAAAABAAEAwF0AAIC7AAACABAATElTVBoAAABJTkZPSVNGVA4AAABMYXZmNTguMjkuMTAwAGRhdGFg',
      expires_at: 1729201448,
      transcript: 'Sure! Why did the cat sit on the computer? Because it wanted to keep an eye on the mouse!'
    }
    

    Audio Outputs
    import { ChatOpenAI } from "@langchain/openai";

    const modelWithAudioOutput = new ChatOpenAI({
    model: "gpt-4o-audio-preview",
    // You may also pass these fields to `.withConfig` as a call argument.
    modalities: ["text", "audio"], // Specifies that the model should output audio.
    audio: {
    voice: "alloy",
    format: "wav",
    },
    });

    const audioOutputResult = await modelWithAudioOutput.invoke("Tell me a joke about cats.");
    const castAudioContent = audioOutputResult.additional_kwargs.audio as Record<string, any>;

    console.log({
    ...castAudioContent,
    data: castAudioContent.data.slice(0, 100) // Sliced for brevity
    })
    {
      id: 'audio_67117718c6008190a3afad3e3054b9b6',
      data: 'UklGRqYwBgBXQVZFZm10IBAAAAABAAEAwF0AAIC7AAACABAATElTVBoAAABJTkZPSVNGVA4AAABMYXZmNTguMjkuMTAwAGRhdGFg',
      expires_at: 1729201448,
      transcript: 'Sure! Why did the cat sit on the computer? Because it wanted to keep an eye on the mouse!'
    }
    

    Type Parameters

    Hierarchy (View Summary)

    Index

    Constructors

    Properties

    __includeRawResponse?: boolean

    Whether to include the raw OpenAI response in the output message's "additional_kwargs" field. Currently in experimental beta.

    apiKey?: string

    API key to use when making requests to OpenAI. Defaults to the value of OPENAI_API_KEY environment variable.

    audio?: ChatCompletionAudioParam

    Parameters for audio output. Required when audio output is requested with modalities: ["audio"]. Learn more.

    completions: ChatOpenAICompletions
    defaultOptions: CallOptions
    frequencyPenalty?: number

    Penalizes repeated tokens according to frequency

    lc_serializable: boolean = true
    logitBias?: Record<string, number>

    Dictionary used to adjust the probability of specific tokens being generated

    logprobs?: boolean

    Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the content of message.

    maxTokens?: number

    Maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the model's maximum context size.

    modalities?: ChatCompletionModality[]

    Output types that you would like the model to generate for this request. Most models are capable of generating text, which is the default:

    ["text"]

    The gpt-4o-audio-preview model can also be used to generate audio. To request that this model generate both text and audio responses, you can use:

    ["text", "audio"]

    model: string = "gpt-3.5-turbo"

    Model name to use

    modelKwargs?: Record<string, any>

    Holds any additional parameters that are valid to pass to openai.createCompletion that are not explicitly specified on this class.

    n?: number

    Number of completions to generate for each prompt

    organization?: string
    presencePenalty?: number

    Penalizes repeated tokens

    promptCacheKey: string

    Used by OpenAI to cache responses for similar requests to optimize your cache hit rates. Learn more.

    reasoning?: Reasoning

    Options for reasoning models.

    Note that some options, like reasoning summaries, are only available when using the responses API. This option is ignored when not using a reasoning model.

    responses: ChatOpenAIResponses
    service_tier?: null | "auto" | "default" | "flex" | "scale" | "priority"

    Service tier to use for this request. Can be "auto", "default", or "flex" or "priority". Specifies the service tier for prioritization and latency optimization.

    stop?: string[]

    List of stop words to use when generating Alias for stopSequences

    stopSequences?: string[]

    List of stop words to use when generating

    streaming: boolean = false

    Whether to stream the results or not. Enabling disables tokenUsage reporting

    streamUsage: boolean = true

    Whether or not to include token usage data in streamed chunks.

    true
    
    supportsStrictToolCalling?: boolean

    Whether the model supports the strict argument when passing in tools. If undefined the strict argument will not be passed to OpenAI.

    temperature?: number

    Sampling temperature to use

    timeout?: number

    Timeout to use when making requests to OpenAI.

    topLogprobs?: number

    An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with an associated log probability. logprobs must be set to true if this parameter is used.

    topP?: number

    Total probability mass of tokens to consider at each step

    user?: string

    Unique string identifier representing your end-user, which can help OpenAI to monitor and detect abuse.

    useResponsesApi: boolean = false

    Whether to use the responses API for all requests. If false the responses API will be used only when required in order to fulfill the request.

    The verbosity of the model's response.

    zdrEnabled?: boolean

    Must be set to true in tenancies with Zero Data Retention. Setting to true will disable output storage in the Responses API, but this DOES NOT enable Zero Data Retention in your OpenAI organization or project. This must be configured directly with OpenAI.

    See: https://platform.openai.com/docs/guides/your-data https://platform.openai.com/docs/api-reference/responses/create#responses-create-store

    false
    

    Accessors

    • get callKeys(): any[]

      Returns any[]

    • get lc_aliases(): Record<string, string>

      Returns Record<string, string>

    • get lc_secrets(): undefined | { [key: string]: string }

      Returns undefined | { [key: string]: string }

    • get lc_serializable_keys(): string[]

      Returns string[]

    Methods

    • Parameters

      • OptionaladditionalOptions: unknown

      Returns unknown

    • Parameters

      • tool: any
      • Optionalfields: { strict?: boolean }

      Returns ChatCompletionTool

    • Returns string

    • Parameters

      • messages: BaseMessage[]
      • options: unknown
      • OptionalrunManager: any

      Returns AsyncGenerator<ChatGenerationChunk>

    • Parameters

      • options: unknown

      Returns any

    • Parameters

      Returns Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions>

    • Parameters

      • options: unknown

      Returns LangSmithParams

    • Parameters

      • messages: BaseMessage[]

      Returns Promise<{ countPerMessage: any; totalCount: number }>

    • Get the identifying parameters for the model

      Returns Omit<ChatCompletionCreateParams, "messages"> & { model_name: string } & ClientOptions

    • Parameters

      • Optionaloptions: unknown

      Returns ChatResponsesInvocationParams | ChatCompletionsInvocationParams

    • Parameters

      • input: BaseLanguageModelInput
      • Optionaloptions: CallOptions

      Returns Promise<any>

    • Parameters

      • input: BaseLanguageModelInput
      • Optionaloptions: CallOptions

      Returns Promise<any>

    • Parameters

      Returns Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions>

    • Type Parameters

      • RunOutput extends Record<string, any> = Record<string, any>

      Parameters

      • outputSchema: any
      • Optionalconfig: any

      Returns Runnable<BaseLanguageModelInput, RunOutput>

    • Type Parameters

      • RunOutput extends Record<string, any> = Record<string, any>

      Parameters

      • outputSchema: any
      • Optionalconfig: any

      Returns Runnable<BaseLanguageModelInput, { parsed: RunOutput; raw: BaseMessage }>

    • Type Parameters

      • RunOutput extends Record<string, any> = Record<string, any>

      Parameters

      • outputSchema: any
      • Optionalconfig: any

      Returns any

    • Returns string