langchain.js
    Preparing search index...

    Class ChatMistralAI<CallOptions>

    Mistral AI chat model integration.

    Setup: Install @langchain/mistralai and set an environment variable named MISTRAL_API_KEY.

    npm install @langchain/mistralai
    export MISTRAL_API_KEY="your-api-key"

    Runtime args can be passed as the second argument to any of the base runnable methods .invoke. .stream, .batch, etc. They can also be passed via .withConfig, or the second arg in .bindTools, like shown in the examples below:

    // When calling `.withConfig`, call options should be passed via the first argument
    const llmWithArgsBound = llm.bindTools([...]) // tools array
    .withConfig({
    stop: ["\n"], // other call options
    });

    // You can also bind tools and call options like this
    const llmWithTools = llm.bindTools([...], {
    tool_choice: "auto",
    });
    Instantiate
    import { ChatMistralAI } from '@langchain/mistralai';

    const llm = new ChatMistralAI({
    model: "mistral-large-2402",
    temperature: 0,
    // other params...
    });

    Invoking
    const input = `Translate "I love programming" into French.`;

    // Models also accept a list of chat messages or a formatted prompt
    const result = await llm.invoke(input);
    console.log(result);
    AIMessage {
      "content": "The translation of \"I love programming\" into French is \"J'aime la programmation\". Here's the breakdown:\n\n- \"I\" translates to \"Je\"\n- \"love\" translates to \"aime\"\n- \"programming\" translates to \"la programmation\"\n\nSo, \"J'aime la programmation\" means \"I love programming\" in French.",
      "additional_kwargs": {},
      "response_metadata": {
        "tokenUsage": {
          "completionTokens": 89,
          "promptTokens": 13,
          "totalTokens": 102
        },
        "finish_reason": "stop"
      },
      "tool_calls": [],
      "invalid_tool_calls": [],
      "usage_metadata": {
        "input_tokens": 13,
        "output_tokens": 89,
        "total_tokens": 102
      }
    }
    

    Streaming Chunks
    for await (const chunk of await llm.stream(input)) {
    console.log(chunk);
    }
    AIMessageChunk {
      "content": "The",
      "additional_kwargs": {},
      "response_metadata": {
        "prompt": 0,
        "completion": 0
      },
      "tool_calls": [],
      "tool_call_chunks": [],
      "invalid_tool_calls": []
    }
    AIMessageChunk {
      "content": " translation",
      "additional_kwargs": {},
      "response_metadata": {
        "prompt": 0,
        "completion": 0
      },
      "tool_calls": [],
      "tool_call_chunks": [],
      "invalid_tool_calls": []
    }
    AIMessageChunk {
      "content": " of",
      "additional_kwargs": {},
      "response_metadata": {
        "prompt": 0,
        "completion": 0
      },
      "tool_calls": [],
      "tool_call_chunks": [],
      "invalid_tool_calls": []
    }
    AIMessageChunk {
      "content": " \"",
      "additional_kwargs": {},
      "response_metadata": {
        "prompt": 0,
        "completion": 0
      },
      "tool_calls": [],
      "tool_call_chunks": [],
      "invalid_tool_calls": []
    }
    AIMessageChunk {
      "content": "I",
      "additional_kwargs": {},
      "response_metadata": {
        "prompt": 0,
        "completion": 0
      },
      "tool_calls": [],
      "tool_call_chunks": [],
      "invalid_tool_calls": []
    }
    AIMessageChunk {
     "content": ".",
     "additional_kwargs": {},
     "response_metadata": {
       "prompt": 0,
       "completion": 0
     },
     "tool_calls": [],
     "tool_call_chunks": [],
     "invalid_tool_calls": []
    }
    AIMessageChunk {
     "content": "",
     "additional_kwargs": {},
     "response_metadata": {
       "prompt": 0,
       "completion": 0
     },
     "tool_calls": [],
     "tool_call_chunks": [],
     "invalid_tool_calls": [],
     "usage_metadata": {
       "input_tokens": 13,
       "output_tokens": 89,
       "total_tokens": 102
     }
    }
    

    Aggregate Streamed Chunks
    import { AIMessageChunk } from '@langchain/core/messages';
    import { concat } from '@langchain/core/utils/stream';

    const stream = await llm.stream(input);
    let full: AIMessageChunk | undefined;
    for await (const chunk of stream) {
    full = !full ? chunk : concat(full, chunk);
    }
    console.log(full);
    AIMessageChunk {
      "content": "The translation of \"I love programming\" into French is \"J'aime la programmation\". Here's the breakdown:\n\n- \"I\" translates to \"Je\"\n- \"love\" translates to \"aime\"\n- \"programming\" translates to \"la programmation\"\n\nSo, \"J'aime la programmation\" means \"I love programming\" in French.",
      "additional_kwargs": {},
      "response_metadata": {
        "prompt": 0,
        "completion": 0
      },
      "tool_calls": [],
      "tool_call_chunks": [],
      "invalid_tool_calls": [],
      "usage_metadata": {
        "input_tokens": 13,
        "output_tokens": 89,
        "total_tokens": 102
      }
    }
    

    Bind tools
    import { z } from 'zod';

    const GetWeather = {
    name: "GetWeather",
    description: "Get the current weather in a given location",
    schema: z.object({
    location: z.string().describe("The city and state, e.g. San Francisco, CA")
    }),
    }

    const GetPopulation = {
    name: "GetPopulation",
    description: "Get the current population in a given location",
    schema: z.object({
    location: z.string().describe("The city and state, e.g. San Francisco, CA")
    }),
    }

    const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
    const aiMsg = await llmWithTools.invoke(
    "Which city is hotter today and which is bigger: LA or NY?"
    );
    console.log(aiMsg.tool_calls);
    [
      {
        name: 'GetWeather',
        args: { location: 'Los Angeles, CA' },
        type: 'tool_call',
        id: '47i216yko'
      },
      {
        name: 'GetWeather',
        args: { location: 'New York, NY' },
        type: 'tool_call',
        id: 'nb3v8Fpcn'
      },
      {
        name: 'GetPopulation',
        args: { location: 'Los Angeles, CA' },
        type: 'tool_call',
        id: 'EedWzByIB'
      },
      {
        name: 'GetPopulation',
        args: { location: 'New York, NY' },
        type: 'tool_call',
        id: 'jLdLia7zC'
      }
    ]
    

    Structured Output
    import { z } from 'zod';

    const Joke = z.object({
    setup: z.string().describe("The setup of the joke"),
    punchline: z.string().describe("The punchline to the joke"),
    rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
    }).describe('Joke to tell user.');

    const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
    const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
    console.log(jokeResult);
    {
      setup: "Why don't cats play poker in the jungle?",
      punchline: 'Too many cheetahs!',
      rating: 7
    }
    

    Usage Metadata
    const aiMsgForMetadata = await llm.invoke(input);
    console.log(aiMsgForMetadata.usage_metadata);
    { input_tokens: 13, output_tokens: 89, total_tokens: 102 }
    

    Type Parameters

    Hierarchy (View Summary)

    Implements

    Index

    Constructors

    Properties

    apiKey: string

    The API key to use.

    {process.env.MISTRAL_API_KEY}
    
    beforeRequestHooks?: BeforeRequestHook[]

    A list of custom hooks that must follow (req: Request) => Awaitable<Request | void> They are automatically added when a ChatMistralAI instance is created.

    endpoint: string

    use serverURL instead

    frequencyPenalty?: number

    Penalizes the repetition of words based on their frequency in the generated text. A higher frequency penalty discourages the model from repeating words that have already appeared frequently in the output, promoting diversity and reducing repetition.

    httpClient?: HTTPClient

    Custom HTTP client to manage API requests. Allows users to add custom fetch implementations, hooks, as well as error and response processing.

    lc_namespace: string[] = ...
    lc_serializable: boolean = true
    maxRetries?: number
    maxTokens: number

    The maximum number of tokens to generate in the completion. The token count of your prompt plus max_tokens cannot exceed the model's context length.

    model: string = "mistral-small-latest"

    The name of the model to use.

    {"mistral-small-latest"}
    
    numCompletions?: number

    Number of completions to return for each request, input tokens are only billed once.

    presencePenalty?: number

    Determines how much the model penalizes the repetition of words or phrases. A higher presence penalty encourages the model to use a wider variety of words and phrases, making the output more diverse and creative.

    randomSeed?: number

    The seed to use for random sampling. If set, different calls will generate deterministic results. Alias for seed

    requestErrorHooks?: RequestErrorHook[]

    A list of custom hooks that must follow (err: unknown, req: Request) => Awaitable. They are automatically added when a ChatMistralAI instance is created.

    responseHooks?: ResponseHook[]

    A list of custom hooks that must follow (res: Response, req: Request) => Awaitable. They are automatically added when a ChatMistralAI instance is created.

    safeMode: boolean = false

    use safePrompt instead

    safePrompt: boolean = false

    Whether to inject a safety prompt before all conversations.

    {false}
    
    seed?: number

    The seed to use for random sampling. If set, different calls will generate deterministic results.

    serverURL?: string

    Override the default server URL used by the Mistral SDK.

    streaming: boolean = false

    Whether or not to stream the response.

    {false}
    
    streamUsage: boolean = true

    Whether or not to include token usage in the stream.

    {true}
    
    temperature: number = 0.7

    What sampling temperature to use, between 0.0 and 2.0. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.

    {0.7}
    
    topP: number = 1

    Nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. Should be between 0 and 1.

    {1}
    

    Accessors

    • get lc_aliases(): undefined | { [key: string]: string }

      Returns undefined | { [key: string]: string }

    • get lc_secrets(): undefined | { [key: string]: string }

      Returns undefined | { [key: string]: string }

    Methods

    • Returns string

    • Parameters

      • messages: BaseMessage[]
      • options: unknown
      • OptionalrunManager: any

      Returns AsyncGenerator<ChatGenerationChunk>

    • Returns void

    • Parameters

      Returns Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions>

    • Calls the MistralAI API with retry logic in case of failures.

      Parameters

      • input: ChatCompletionStreamRequest

        The input to send to the MistralAI API.

      • streaming: true

      Returns Promise<AsyncIterable<CompletionEvent, any, any>>

      The response from the MistralAI API.

    • Calls the MistralAI API with retry logic in case of failures.

      Parameters

      • input: ChatCompletionRequest

        The input to send to the MistralAI API.

      • streaming: false

      Returns Promise<ChatCompletionResponse>

      The response from the MistralAI API.

    • Parameters

      • options: unknown

      Returns LangSmithParams

    • Get the parameters used to invoke the model

      Parameters

      • Optionaloptions: unknown

      Returns Omit<
          MistralAIChatCompletionRequest
          | MistralAIChatCompletionStreamRequest,
          "messages",
      >

    • Returns void

    • Parameters

      • hook: BeforeRequestHook | RequestErrorHook | ResponseHook

      Returns void

    • Type Parameters

      • RunOutput extends Record<string, any> = Record<string, any>

      Parameters

      • outputSchema: any
      • Optionalconfig: any

      Returns Runnable<BaseLanguageModelInput, RunOutput>

    • Type Parameters

      • RunOutput extends Record<string, any> = Record<string, any>

      Parameters

      • outputSchema: any
      • Optionalconfig: any

      Returns Runnable<BaseLanguageModelInput, { parsed: RunOutput; raw: BaseMessage }>

    • Returns string