langchain.js
    Preparing search index...

    Class RemoteGraph<Nn, Cc, ContextType>

    The RemoteGraph class is a client implementation for calling remote APIs that implement the LangGraph Server API specification.

    For example, the RemoteGraph class can be used to call APIs from deployments on LangGraph Cloud.

    RemoteGraph behaves the same way as a StateGraph and can be used directly as a node in another StateGraph.

    import { RemoteGraph } from "@langchain/langgraph/remote";

    // Can also pass a LangGraph SDK client instance directly
    const remoteGraph = new RemoteGraph({
    graphId: process.env.LANGGRAPH_REMOTE_GRAPH_ID!,
    apiKey: process.env.LANGGRAPH_REMOTE_GRAPH_API_KEY,
    url: process.env.LANGGRAPH_REMOTE_GRAPH_API_URL,
    });

    const input = {
    messages: [
    {
    role: "human",
    content: "Hello world!",
    },
    ],
    };

    const config = {
    configurable: { thread_id: "threadId1" },
    };

    await remoteGraph.invoke(input, config);

    Type Parameters

    • Nn extends StrRecord<string, PregelNode> = StrRecord<string, PregelNode>
    • Cc extends StrRecord<string, BaseChannel> = StrRecord<string, BaseChannel>
    • ContextType extends Record<string, any> = StrRecord<string, any>

    Hierarchy

    Implements

    Index

    Constructors

    • Type Parameters

      • Nn extends StrRecord<string, PregelNode<any, any>> = StrRecord<string, PregelNode<any, any>>
      • Cc extends StrRecord<string, BaseChannel<unknown, unknown, unknown>> = StrRecord<string, BaseChannel<unknown, unknown, unknown>>
      • ContextType extends Record<string, any> = StrRecord<string, any>

      Parameters

      Returns RemoteGraph<Nn, Cc, ContextType>

    Properties

    client: Client
    config?: RunnableConfig<Record<string, any>>
    graphId: string
    interruptAfter?: any
    interruptBefore?: any
    lc_namespace: string[] = ...

    A path to the module that contains the class, eg. ["langchain", "llms"] Usually should be the same as the entrypoint the class is exported from.

    lg_is_pregel: boolean = true

    Methods

    • Parameters

      • state: ThreadState

      Returns StateSnapshot

    • Parameters

      • Optionalconfig: RunnableConfig<Record<string, any>>

      Returns any

    • Parameters

      • checkpoint: Record<string, unknown>

      Returns RunnableConfig

    • Parameters

      • nodes: {
            data?: string | Record<string, any>;
            id: string | number;
            metadata?: unknown;
            name?: string;
        }[]

      Returns Record<string, DrawableNode>

    • Parameters

      • config: RunnableConfig

      Returns {
          configurable: { [k: string]: any };
          metadata: Record<string, unknown>;
          recursion_limit: undefined | number;
          tags: string[];
      }

    • Default streaming implementation. Subclasses should override this method if they support streaming output.

      Parameters

      • input: any
      • Optionaloptions: Partial<
            PregelOptions<
                Nn,
                Cc,
                ContextType,
                undefined
                | StreamMode
                | StreamMode[],
                boolean,
                undefined | "text/event-stream",
            >,
        >

      Returns AsyncGenerator<any>

    • Parameters

      • Optional_: RunnableConfig<Record<string, any>> & { xray?: number | boolean }

      Returns Graph

      Use getGraphAsync instead. The async method will become the default in the next minor release.

    • Returns a drawable representation of the computation graph.

      Parameters

      • Optionalconfig: RunnableConfig<Record<string, any>> & { xray?: number | boolean }

      Returns Promise<Graph>

    • Parameters

      • config: RunnableConfig
      • Optionaloptions: { subgraphs?: boolean }

      Returns Promise<StateSnapshot>

    • Parameters

      • config: RunnableConfig
      • Optionaloptions: any

      Returns AsyncIterableIterator<StateSnapshot>

    • Returns Generator<[string, PregelInterface<Nn, Cc, ContextType>]>

      Use getSubgraphsAsync instead. The async method will become the default in the next minor release.

    • Parameters

      • Optionalnamespace: string
      • recurse: boolean = false

      Returns AsyncGenerator<[string, PregelInterface<Nn, Cc, ContextType>]>

    • Parameters

      • input: any
      • Optionaloptions: Partial<
            PregelOptions<
                Nn,
                Cc,
                ContextType,
                undefined
                | StreamMode
                | StreamMode[],
                boolean,
                undefined | "text/event-stream",
            >,
        >

      Returns Promise<any>

    • Generate a stream of events emitted by the internal steps of the runnable.

      Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

      A StreamEvent is a dictionary with the following schema:

      • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
      • name: string - The name of the runnable that generated the event.
      • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
      • tags: string[] - The tags of the runnable that generated the event.
      • metadata: Record<string, any> - The metadata of the runnable that generated the event.
      • data: Record<string, any>

      Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

      ATTENTION This reference table is for the V2 version of the schema.

      +----------------------+-----------------------------+------------------------------------------+
      | event                | input                       | output/chunk                             |
      +======================+=============================+==========================================+
      | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_start         | {'input': 'hello'}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_stream        |                             | 'Hello'                                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_end           | 'Hello human!'              |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_start       |                             |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_stream      |                             | "hello world!"                           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_start   | {"query": "hello"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_start      | {"question": "hello"}       |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
      +----------------------+-----------------------------+------------------------------------------+
      

      The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

      In addition to the standard events above, users can also dispatch custom events.

      Custom events will be only be surfaced with in the v2 version of the API!

      A custom event has following format:

      +-----------+------+------------------------------------------------------------+
      | Attribute | Type | Description                                                |
      +===========+======+============================================================+
      | name      | str  | A user defined name for the event.                         |
      +-----------+------+------------------------------------------------------------+
      | data      | Any  | The data associated with the event. This can be anything.  |
      +-----------+------+------------------------------------------------------------+
      

      Here's an example:

      import { RunnableLambda } from "@langchain/core/runnables";
      import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
      // Use this import for web environments that don't support "async_hooks"
      // and manually pass config to child runs.
      // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

      const slowThing = RunnableLambda.from(async (someInput: string) => {
      // Placeholder for some slow operation
      await new Promise((resolve) => setTimeout(resolve, 100));
      await dispatchCustomEvent("progress_event", {
      message: "Finished step 1 of 2",
      });
      await new Promise((resolve) => setTimeout(resolve, 100));
      return "Done";
      });

      const eventStream = await slowThing.streamEvents("hello world", {
      version: "v2",
      });

      for await (const event of eventStream) {
      if (event.event === "on_custom_event") {
      console.log(event);
      }
      }

      Parameters

      • input: any
      • options: Partial<
            PregelOptions<
                Nn,
                Cc,
                ContextType,
                undefined
                | StreamMode
                | StreamMode[],
                boolean,
                undefined | "text/event-stream",
            >,
        > & { version: "v1" | "v2" }

      Returns IterableReadableStream<StreamEvent>

    • Parameters

      • input: any
      • options: Partial<
            PregelOptions<
                Nn,
                Cc,
                ContextType,
                undefined
                | StreamMode
                | StreamMode[],
                boolean,
                undefined | "text/event-stream",
            >,
        > & { encoding: never; version: "v1" | "v2" }

      Returns IterableReadableStream<never>

    • Parameters

      Returns Promise<RunnableConfig<Record<string, any>>>

    • Bind config to a Runnable, returning a new Runnable.

      Parameters

      • config: RunnableConfig

        New configuration parameters to attach to the new runnable.

      Returns RemoteGraph<Nn, Cc, ContextType>

      A new RunnableBinding with a config matching what's passed.

    • The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.

      Implemented as a static method to support loading logic.

      Returns string