langchain.js
    Preparing search index...

    Class for retrieving documents from a VectorStore based on vector similarity or maximal marginal relevance (MMR).

    VectorStoreRetriever extends BaseRetriever, implementing methods for adding documents to the underlying vector store and performing document retrieval with optional configurations.

    VectorStoreRetriever

    VectorStoreRetrieverInterface

    Type Parameters

    Hierarchy (View Summary)

    Implements

    Index

    Constructors

    • Initializes a new instance of VectorStoreRetriever with the specified configuration.

      This constructor configures the retriever to interact with a given VectorStore and supports different retrieval strategies, including similarity search and maximal marginal relevance (MMR) search. Various options allow customization of the number of documents retrieved per query, filtering based on conditions, and fine-tuning MMR-specific parameters.

      Type Parameters

      Parameters

      • fields: VectorStoreRetrieverInput<V>

        Configuration options for setting up the retriever:

        • vectorStore (required): The VectorStore instance implementing VectorStoreInterface that will be used to store and retrieve document embeddings. This is the core component of the retriever, enabling vector-based similarity and MMR searches.

        • k (optional): Specifies the number of documents to retrieve per search query. If not provided, defaults to 4. This count determines the number of most relevant documents returned for each search operation, balancing performance with comprehensiveness.

        • searchType (optional): Defines the search approach used by the retriever, allowing for flexibility between two methods:

          • "similarity" (default): A similarity-based search, retrieving documents with high vector similarity to the query. This type prioritizes relevance and is often used when diversity among results is less critical.
          • "mmr": Maximal Marginal Relevance search, which combines relevance with diversity. MMR is useful for scenarios where varied content is essential, as it selects results that both match the query and introduce content diversity.
        • filter (optional): A filter of type FilterType, defined by the vector store, that allows for refined and targeted search results. This filter applies specified conditions to limit which documents are eligible for retrieval, offering control over the scope of results.

        • searchKwargs (optional, applicable only if searchType is "mmr"): Additional settings for configuring MMR-specific behavior. These parameters allow further tuning of the MMR search process:

          • fetchK: The initial number of documents fetched from the vector store before the MMR algorithm is applied. Fetching a larger set enables the algorithm to select a more diverse subset of documents.
          • lambda: A parameter controlling the relevance-diversity balance, where 0 emphasizes diversity and 1 prioritizes relevance. Intermediate values provide a blend of the two, allowing customization based on the importance of content variety relative to query relevance.

      Returns VectorStoreRetriever<V>

    Properties

    callbacks?: Callbacks

    Optional callbacks to handle various events in the retrieval process.

    filter?: V["FilterType"]

    Optional filter applied to search results, defined by the FilterType of the vector store. Allows for refined, targeted results by restricting the returned documents based on specified filter criteria.

    k: number = 4

    Specifies the number of documents to retrieve for each search query. Defaults to 4 if not specified, providing a basic result count for similarity or MMR searches.

    lc_kwargs: SerializedFields
    lc_runnable: boolean = true
    lc_serializable: boolean = false
    metadata?: Record<string, unknown>

    Metadata to provide additional context or information about the retrieval operation.

    name?: string

    Additional options specific to maximal marginal relevance (MMR) search, applicable only if searchType is set to "mmr".

    Includes:

    • fetchK: The initial number of documents fetched before applying the MMR algorithm, allowing for a larger selection from which to choose the most diverse results.
    • lambda: A parameter between 0 and 1 to adjust the relevance-diversity balance, where 0 prioritizes diversity and 1 prioritizes relevance.
    searchType: string = "similarity"

    Determines the type of search operation to perform on the vector store.

    • "similarity" (default): Conducts a similarity search based purely on vector similarity to the query.
    • "mmr": Executes a maximal marginal relevance (MMR) search, balancing relevance and diversity in the retrieved results.
    tags?: string[]

    Tags to label or categorize the retrieval operation.

    vectorStore: V

    The instance of VectorStore used for storing and retrieving document embeddings. This vector store must implement the VectorStoreInterface to be compatible with the retriever’s operations.

    verbose?: boolean

    If set to true, enables verbose logging for the retrieval process.

    Accessors

    • get lc_aliases(): undefined | { [key: string]: string }

      A map of aliases for constructor args. Keys are the attribute names, e.g. "foo". Values are the alias that will replace the key in serialization. This is used to eg. make argument names match Python.

      Returns undefined | { [key: string]: string }

    • get lc_attributes(): undefined | SerializedFields

      A map of additional attributes to merge with constructor args. Keys are the attribute names, e.g. "foo". Values are the attribute values, which will be serialized. These attributes need to be accepted by the constructor as arguments.

      Returns undefined | SerializedFields

    • get lc_id(): string[]

      The final serialized identifier for the module.

      Returns string[]

    • get lc_namespace(): string[]

      A path to the module that contains the class, eg. ["langchain", "llms"] Usually should be the same as the entrypoint the class is exported from.

      Returns string[]

    • get lc_secrets(): undefined | { [key: string]: string }

      A map of secrets, which will be omitted from serialization. Keys are paths to the secret in constructor args, e.g. "foo.bar.baz". Values are the secret ids, which will be used when deserializing.

      Returns undefined | { [key: string]: string }

    • get lc_serializable_keys(): undefined | string[]

      A manual list of keys that should be serialized. If not overridden, all fields passed into the constructor will be serialized.

      Returns undefined | string[]

    Methods

    • Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.

      Type Parameters

      • T extends string

      Parameters

      Returns Promise<(DocumentInterface<Record<string, any>>[] | Error)[]>

      A promise that resolves to the output values.

    • Type Parameters

      • T extends string

      Parameters

      • func:
            | ((input: T) => Promise<DocumentInterface<Record<string, any>>[]>)
            | (
                (
                    input: T,
                    config?: Partial<RunnableConfig<Record<string, any>>>,
                    runManager?: CallbackManagerForChainRun,
                ) => Promise<DocumentInterface<Record<string, any>>[]>
            )
      • input: T
      • Optionaloptions: Partial<RunnableConfig<Record<string, any>>> & { runType?: string }

      Returns Promise<DocumentInterface<Record<string, any>>[]>

    • Type Parameters

      Parameters

      • options: Partial<O> | Partial<O>[]
      • length: number = 0

      Returns Partial<O>[]

    • Protected

      Retrieves relevant documents based on the specified query, using either similarity or maximal marginal relevance (MMR) search.

      If searchType is set to "mmr", performs an MMR search to balance similarity and diversity among results. If searchType is "similarity", retrieves results purely based on similarity to the query.

      Parameters

      • query: string

        The query string used to find relevant documents.

      • OptionalrunManager: CallbackManagerForRetrieverRun

        Optional callback manager for tracking retrieval progress.

      Returns Promise<DocumentInterface<Record<string, any>>[]>

      A promise that resolves to an array of DocumentInterface instances representing the most relevant documents to the query.

      Throws an error if MMR search is requested but not supported by the vector store.

    • Default streaming implementation. Subclasses should override this method if they support streaming output.

      Parameters

      • input: string
      • Optionaloptions: Partial<RunnableConfig<Record<string, any>>>

      Returns AsyncGenerator<DocumentInterface<Record<string, any>>[]>

    • Helper method to transform an Iterator of Input values into an Iterator of Output values, with callbacks. Use this to implement stream() or transform() in Runnable subclasses.

      Type Parameters

      Parameters

      • inputGenerator: AsyncGenerator<I>
      • transformer: (
            generator: AsyncGenerator<I>,
            runManager?: CallbackManagerForChainRun,
            options?: Partial<RunnableConfig<Record<string, any>>>,
        ) => AsyncGenerator<O>
      • Optionaloptions: Partial<RunnableConfig<Record<string, any>>> & { runType?: string }

      Returns AsyncGenerator<O>

    • Returns the type of vector store, as defined by the vectorStore instance.

      Returns string

      The vector store type.

    • Adds an array of documents to the vector store, embedding them as part of the storage process.

      This method delegates document embedding and storage to the addDocuments method of the underlying vector store.

      Parameters

      • documents: DocumentInterface<Record<string, any>>[]

        An array of documents to embed and add to the vector store.

      • Optionaloptions: AddDocumentOptions

        Optional settings to customize document addition.

      Returns Promise<void | string[]>

      A promise that resolves to an array of document IDs or void, depending on the vector store's implementation.

    • Assigns new fields to the dict output of this runnable. Returns a new runnable.

      Parameters

      • mapping: RunnableMapLike<Record<string, unknown>, Record<string, unknown>>

      Returns Runnable

    • Convert a runnable to a tool. Return a new instance of RunnableToolLike which contains the runnable, name, description and schema.

      Type Parameters

      • T extends string = string

      Parameters

      • fields: { description?: string; name?: string; schema: InteropZodType<T> }
        • Optionaldescription?: string

          The description of the tool. Falls back to the description on the Zod schema if not provided, or undefined if neither are provided.

        • Optionalname?: string

          The name of the tool. If not provided, it will default to the name of the runnable.

        • schema: InteropZodType<T>

          The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.

      Returns RunnableToolLike<
          InteropZodType<ToolCall<string, Record<string, any>> | T>,
          DocumentInterface<Record<string, any>>[],
      >

      An instance of RunnableToolLike which is a runnable that can be used as a tool.

    • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

      Parameters

      • inputs: string[]

        Array of inputs to each batch call.

      • Optionaloptions:
            | Partial<RunnableConfig<Record<string, any>>>
            | Partial<RunnableConfig<Record<string, any>>>[]

        Either a single call options object to apply to each batch call or an array for each call.

      • OptionalbatchOptions: RunnableBatchOptions & { returnExceptions?: false }
        • OptionalmaxConcurrency?: number

          Pass in via the standard runnable config object instead

        • OptionalreturnExceptions?: boolean
        • OptionalreturnExceptions?: false

          Whether to return errors rather than throwing on the first one

      Returns Promise<DocumentInterface<Record<string, any>>[][]>

      An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

    • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

      Parameters

      • inputs: string[]

        Array of inputs to each batch call.

      • Optionaloptions:
            | Partial<RunnableConfig<Record<string, any>>>
            | Partial<RunnableConfig<Record<string, any>>>[]

        Either a single call options object to apply to each batch call or an array for each call.

      • OptionalbatchOptions: RunnableBatchOptions & { returnExceptions: true }
        • OptionalmaxConcurrency?: number

          Pass in via the standard runnable config object instead

        • OptionalreturnExceptions?: boolean
        • returnExceptions: true

          Whether to return errors rather than throwing on the first one

      Returns Promise<(DocumentInterface<Record<string, any>>[] | Error)[]>

      An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

    • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

      Parameters

      • inputs: string[]

        Array of inputs to each batch call.

      • Optionaloptions:
            | Partial<RunnableConfig<Record<string, any>>>
            | Partial<RunnableConfig<Record<string, any>>>[]

        Either a single call options object to apply to each batch call or an array for each call.

      • OptionalbatchOptions: RunnableBatchOptions
        • OptionalmaxConcurrency?: number

          Pass in via the standard runnable config object instead

        • OptionalreturnExceptions?: boolean

      Returns Promise<(DocumentInterface<Record<string, any>>[] | Error)[]>

      An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

    • Bind arguments to a Runnable, returning a new Runnable.

      Parameters

      Returns Runnable<
          string,
          DocumentInterface<Record<string, any>>[],
          RunnableConfig<Record<string, any>>,
      >

      A new RunnableBinding that, when invoked, will apply the bound args.

      Use withConfig instead. This will be removed in the next breaking release.

    • Parameters

      • query: string

        The query string to retrieve relevant documents for.

      • Optionalconfig: Callbacks | BaseCallbackConfig

        Optional configuration object for the retrieval process.

      Returns Promise<DocumentInterface<Record<string, any>>[]>

      A promise that resolves to an array of Document objects.

      Use .invoke() instead. Will be removed in 0.3.0.

      Main method used to retrieve relevant documents. It takes a query string and an optional configuration object, and returns a promise that resolves to an array of Document objects. This method handles the retrieval process, including starting and ending callbacks, and error handling.

    • Executes a retrieval operation.

      Parameters

      • input: string

        The query string used to search for relevant documents.

      • Optionaloptions: RunnableConfig<Record<string, any>>

        (optional) Configuration options for the retrieval run, which may include callbacks, tags, and metadata.

      Returns Promise<DocumentInterface<Record<string, any>>[]>

      A promise that resolves to an array of DocumentInterface instances representing the most relevant documents to the query.

    • Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.

      Returns Runnable<
          string[],
          DocumentInterface<Record<string, any>>[][],
          RunnableConfig<Record<string, any>>,
      >

      This will be removed in the next breaking release.

    • Pick keys from the dict output of this runnable. Returns a new runnable.

      Parameters

      • keys: string | string[]

      Returns Runnable

    • Generate a stream of events emitted by the internal steps of the runnable.

      Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

      A StreamEvent is a dictionary with the following schema:

      • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
      • name: string - The name of the runnable that generated the event.
      • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
      • tags: string[] - The tags of the runnable that generated the event.
      • metadata: Record<string, any> - The metadata of the runnable that generated the event.
      • data: Record<string, any>

      Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

      ATTENTION This reference table is for the V2 version of the schema.

      +----------------------+-----------------------------+------------------------------------------+
      | event                | input                       | output/chunk                             |
      +======================+=============================+==========================================+
      | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_start         | {'input': 'hello'}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_stream        |                             | 'Hello'                                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_end           | 'Hello human!'              |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_start       |                             |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_stream      |                             | "hello world!"                           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_start   | {"query": "hello"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_start      | {"question": "hello"}       |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
      +----------------------+-----------------------------+------------------------------------------+
      

      The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

      In addition to the standard events above, users can also dispatch custom events.

      Custom events will be only be surfaced with in the v2 version of the API!

      A custom event has following format:

      +-----------+------+------------------------------------------------------------+
      | Attribute | Type | Description                                                |
      +===========+======+============================================================+
      | name      | str  | A user defined name for the event.                         |
      +-----------+------+------------------------------------------------------------+
      | data      | Any  | The data associated with the event. This can be anything.  |
      +-----------+------+------------------------------------------------------------+
      

      Here's an example:

      import { RunnableLambda } from "@langchain/core/runnables";
      import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
      // Use this import for web environments that don't support "async_hooks"
      // and manually pass config to child runs.
      // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

      const slowThing = RunnableLambda.from(async (someInput: string) => {
      // Placeholder for some slow operation
      await new Promise((resolve) => setTimeout(resolve, 100));
      await dispatchCustomEvent("progress_event", {
      message: "Finished step 1 of 2",
      });
      await new Promise((resolve) => setTimeout(resolve, 100));
      return "Done";
      });

      const eventStream = await slowThing.streamEvents("hello world", {
      version: "v2",
      });

      for await (const event of eventStream) {
      if (event.event === "on_custom_event") {
      console.log(event);
      }
      }

      Parameters

      • input: string
      • options: Partial<RunnableConfig<Record<string, any>>> & { version: "v1" | "v2" }
      • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

      Returns IterableReadableStream<StreamEvent>

    • Generate a stream of events emitted by the internal steps of the runnable.

      Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

      A StreamEvent is a dictionary with the following schema:

      • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
      • name: string - The name of the runnable that generated the event.
      • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
      • tags: string[] - The tags of the runnable that generated the event.
      • metadata: Record<string, any> - The metadata of the runnable that generated the event.
      • data: Record<string, any>

      Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

      ATTENTION This reference table is for the V2 version of the schema.

      +----------------------+-----------------------------+------------------------------------------+
      | event                | input                       | output/chunk                             |
      +======================+=============================+==========================================+
      | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_start         | {'input': 'hello'}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_stream        |                             | 'Hello'                                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_end           | 'Hello human!'              |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_start       |                             |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_stream      |                             | "hello world!"                           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_start   | {"query": "hello"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_start      | {"question": "hello"}       |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
      +----------------------+-----------------------------+------------------------------------------+
      

      The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

      In addition to the standard events above, users can also dispatch custom events.

      Custom events will be only be surfaced with in the v2 version of the API!

      A custom event has following format:

      +-----------+------+------------------------------------------------------------+
      | Attribute | Type | Description                                                |
      +===========+======+============================================================+
      | name      | str  | A user defined name for the event.                         |
      +-----------+------+------------------------------------------------------------+
      | data      | Any  | The data associated with the event. This can be anything.  |
      +-----------+------+------------------------------------------------------------+
      

      Here's an example:

      import { RunnableLambda } from "@langchain/core/runnables";
      import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
      // Use this import for web environments that don't support "async_hooks"
      // and manually pass config to child runs.
      // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

      const slowThing = RunnableLambda.from(async (someInput: string) => {
      // Placeholder for some slow operation
      await new Promise((resolve) => setTimeout(resolve, 100));
      await dispatchCustomEvent("progress_event", {
      message: "Finished step 1 of 2",
      });
      await new Promise((resolve) => setTimeout(resolve, 100));
      return "Done";
      });

      const eventStream = await slowThing.streamEvents("hello world", {
      version: "v2",
      });

      for await (const event of eventStream) {
      if (event.event === "on_custom_event") {
      console.log(event);
      }
      }

      Parameters

      • input: string
      • options: Partial<RunnableConfig<Record<string, any>>> & {
            encoding: "text/event-stream";
            version: "v1" | "v2";
        }
      • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

      Returns IterableReadableStream<Uint8Array<ArrayBufferLike>>

    • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

      Parameters

      Returns AsyncGenerator<RunLogPatch>

    • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

      Parameters

      • generator: AsyncGenerator<string>
      • options: Partial<CallOptions>

      Returns AsyncGenerator<DocumentInterface<Record<string, any>>[]>

    • Bind config to a Runnable, returning a new Runnable.

      Parameters

      • config: Partial<CallOptions>

        New configuration parameters to attach to the new runnable.

      Returns Runnable<
          string,
          DocumentInterface<Record<string, any>>[],
          RunnableConfig<Record<string, any>>,
      >

      A new RunnableBinding with a config matching what's passed.

    • Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.

      Parameters

      • params: {
            onEnd?: (
                run: Run,
                config?: RunnableConfig<Record<string, any>>,
            ) => void | Promise<void>;
            onError?: (
                run: Run,
                config?: RunnableConfig<Record<string, any>>,
            ) => void | Promise<void>;
            onStart?: (
                run: Run,
                config?: RunnableConfig<Record<string, any>>,
            ) => void | Promise<void>;
        }

        The object containing the callback functions.

        • OptionalonEnd?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

          Called after the runnable finishes running, with the Run object.

        • OptionalonError?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

          Called if the runnable throws an error, with the Run object.

        • OptionalonStart?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

          Called before the runnable starts running, with the Run object.

      Returns Runnable<
          string,
          DocumentInterface<Record<string, any>>[],
          RunnableConfig<Record<string, any>>,
      >

    • The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.

      Implemented as a static method to support loading logic.

      Returns string