langchain.js
    Preparing search index...

    LLM class that provides a simpler interface to subclass than BaseLLM.

    Requires only implementing a simpler _call method instead of _generate.

    Hierarchy (View Summary)

    • LLM
      • FakeStreamingLLM
    Index

    Constructors

    • Parameters

      • fields: { responses?: string[]; sleep?: number; thrownErrorString?: string } & BaseLLMParams

      Returns FakeStreamingLLM

    Properties

    callbacks?: Callbacks
    caller: AsyncCaller

    The async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.

    lc_kwargs: SerializedFields
    lc_namespace: string[] = ...

    A path to the module that contains the class, eg. ["langchain", "llms"] Usually should be the same as the entrypoint the class is exported from.

    lc_runnable: boolean = true
    lc_serializable: boolean = false
    metadata?: Record<string, unknown>
    name?: string
    ParsedCallOptions: Omit<
        CallOptions,
        Exclude<keyof RunnableConfig, "signal" | "timeout" | "maxConcurrency">,
    >
    responses?: string[]
    sleep?: number = 50
    tags?: string[]
    thrownErrorString?: string
    verbose: boolean

    Whether to print out response text.

    Accessors

    • get callKeys(): string[]

      Keys that the language model accepts as call options.

      Returns string[]

    • get lc_aliases(): undefined | { [key: string]: string }

      A map of aliases for constructor args. Keys are the attribute names, e.g. "foo". Values are the alias that will replace the key in serialization. This is used to eg. make argument names match Python.

      Returns undefined | { [key: string]: string }

    • get lc_attributes(): undefined | { [key: string]: undefined }

      A map of additional attributes to merge with constructor args. Keys are the attribute names, e.g. "foo". Values are the attribute values, which will be serialized. These attributes need to be accepted by the constructor as arguments.

      Returns undefined | { [key: string]: undefined }

    • get lc_id(): string[]

      The final serialized identifier for the module.

      Returns string[]

    • get lc_secrets(): undefined | { [key: string]: string }

      A map of secrets, which will be omitted from serialization. Keys are paths to the secret in constructor args, e.g. "foo.bar.baz". Values are the secret ids, which will be used when deserializing.

      Returns undefined | { [key: string]: string }

    • get lc_serializable_keys(): undefined | string[]

      A manual list of keys that should be serialized. If not overridden, all fields passed into the constructor will be serialized.

      Returns undefined | string[]

    Methods

    • Run the LLM on the given prompt and input.

      Parameters

      • prompt: string

      Returns Promise<string>

    • Type Parameters

      Parameters

      • func:
            | ((input: T) => Promise<string>)
            | (
                (
                    input: T,
                    config?: Partial<BaseLLMCallOptions>,
                    runManager?: CallbackManagerForChainRun,
                ) => Promise<string>
            )
      • input: T
      • Optionaloptions: Partial<BaseLLMCallOptions> & { runType?: string }

      Returns Promise<string>

    • Run the LLM on the given prompts and input.

      Parameters

      • prompts: string[]
      • options: Omit<
            BaseLLMCallOptions,
            | "callbacks"
            | "configurable"
            | "recursionLimit"
            | "runName"
            | "tags"
            | "metadata"
            | "runId",
        >
      • OptionalrunManager: CallbackManagerForLLMRun

      Returns Promise<LLMResult>

    • Parameters

      • __namedParameters: {
            cache: BaseCache<Generation[]>;
            handledOptions: RunnableConfig;
            llmStringKey: string;
            parsedOptions: any;
            prompts: string[];
            runId?: string;
        }

      Returns Promise<
          LLMResult & {
              missingPromptIndices: number[];
              startedRunManagers?: CallbackManagerForLLMRun[];
          },
      >

    • Type Parameters

      Parameters

      • options: Partial<O> | Partial<O>[]
      • length: number = 0

      Returns Partial<O>[]

    • Create a unique cache key for a specific call to a specific language model.

      Parameters

      Returns string

      A unique cache key.

    • Get the identifying parameters of the LLM.

      Returns Record<string, any>

    • Return the string type key uniquely identifying this class of LLM.

      Returns string

    • Returns string

    • Parameters

      Returns [
          RunnableConfig<Record<string, any>>,
          Omit<
              BaseLLMCallOptions,
              | "callbacks"
              | "configurable"
              | "recursionLimit"
              | "runName"
              | "tags"
              | "metadata"
              | "runId",
          >,
      ]

    • Parameters

      • input: string
      • Optional_options: Omit<
            BaseLLMCallOptions,
            | "callbacks"
            | "configurable"
            | "recursionLimit"
            | "runName"
            | "tags"
            | "metadata"
            | "runId",
        >
      • OptionalrunManager: CallbackManagerForLLMRun

      Returns AsyncGenerator<GenerationChunk, void, unknown>

    • Helper method to transform an Iterator of Input values into an Iterator of Output values, with callbacks. Use this to implement stream() or transform() in Runnable subclasses.

      Type Parameters

      Parameters

      Returns AsyncGenerator<O>

    • Assigns new fields to the dict output of this runnable. Returns a new runnable.

      Parameters

      • mapping: RunnableMapLike<Record<string, unknown>, Record<string, unknown>>

      Returns Runnable

    • Convert a runnable to a tool. Return a new instance of RunnableToolLike which contains the runnable, name, description and schema.

      Type Parameters

      Parameters

      • fields: { description?: string; name?: string; schema: InteropZodType<T> }
        • Optionaldescription?: string

          The description of the tool. Falls back to the description on the Zod schema if not provided, or undefined if neither are provided.

        • Optionalname?: string

          The name of the tool. If not provided, it will default to the name of the runnable.

        • schema: InteropZodType<T>

          The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.

      Returns RunnableToolLike<
          InteropZodType<ToolCall<string, Record<string, any>> | T>,
          string,
      >

      An instance of RunnableToolLike which is a runnable that can be used as a tool.

    • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

      Parameters

      • inputs: BaseLanguageModelInput[]

        Array of inputs to each batch call.

      • Optionaloptions: Partial<BaseLLMCallOptions> | Partial<BaseLLMCallOptions>[]

        Either a single call options object to apply to each batch call or an array for each call.

      • OptionalbatchOptions: RunnableBatchOptions & { returnExceptions?: false }
        • OptionalmaxConcurrency?: number

          Pass in via the standard runnable config object instead

        • OptionalreturnExceptions?: boolean
        • OptionalreturnExceptions?: false

          Whether to return errors rather than throwing on the first one

      Returns Promise<string[]>

      An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

    • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

      Parameters

      • inputs: BaseLanguageModelInput[]

        Array of inputs to each batch call.

      • Optionaloptions: Partial<BaseLLMCallOptions> | Partial<BaseLLMCallOptions>[]

        Either a single call options object to apply to each batch call or an array for each call.

      • OptionalbatchOptions: RunnableBatchOptions & { returnExceptions: true }
        • OptionalmaxConcurrency?: number

          Pass in via the standard runnable config object instead

        • OptionalreturnExceptions?: boolean
        • returnExceptions: true

          Whether to return errors rather than throwing on the first one

      Returns Promise<(string | Error)[]>

      An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

    • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

      Parameters

      • inputs: BaseLanguageModelInput[]

        Array of inputs to each batch call.

      • Optionaloptions: Partial<BaseLLMCallOptions> | Partial<BaseLLMCallOptions>[]

        Either a single call options object to apply to each batch call or an array for each call.

      • OptionalbatchOptions: RunnableBatchOptions
        • OptionalmaxConcurrency?: number

          Pass in via the standard runnable config object instead

        • OptionalreturnExceptions?: boolean

      Returns Promise<(string | Error)[]>

      An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

    • Parameters

      Returns Promise<string>

      Use .invoke() instead. Will be removed in 0.2.0. Convenience wrapper for generate that takes in a single string prompt and returns a single string output.

    • Run the LLM on the given prompts and input, handling caching.

      Parameters

      Returns Promise<LLMResult>

    • Parameters

      • Optionalsuffix: string

      Returns string

    • Get the number of tokens in the content.

      Parameters

      Returns Promise<number>

      The number of tokens in the content.

    • Get the parameters used to invoke the model

      Parameters

      • Optional_options: Omit<
            BaseLLMCallOptions,
            | "callbacks"
            | "configurable"
            | "recursionLimit"
            | "runName"
            | "tags"
            | "metadata"
            | "runId",
        >

      Returns any

    • This method takes an input and options, and returns a string. It converts the input to a prompt value and generates a result based on the prompt.

      Parameters

      Returns Promise<string>

      A string result based on the prompt.

    • Pick keys from the dict output of this runnable. Returns a new runnable.

      Parameters

      • keys: string | string[]

      Returns Runnable

    • Parameters

      • text: string

        Input text for the prediction.

      • Optionaloptions: string[] | BaseLLMCallOptions

        Options for the LLM call.

      • Optionalcallbacks: Callbacks

        Callbacks for the LLM call.

      Returns Promise<string>

      A prediction based on the input text.

      Use .invoke() instead. Will be removed in 0.2.0.

      This method is similar to call, but it's used for making predictions based on the input text.

    • Returns SerializedLLM

      Return a json-like object representing this LLM.

    • Generate a stream of events emitted by the internal steps of the runnable.

      Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

      A StreamEvent is a dictionary with the following schema:

      • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
      • name: string - The name of the runnable that generated the event.
      • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
      • tags: string[] - The tags of the runnable that generated the event.
      • metadata: Record<string, any> - The metadata of the runnable that generated the event.
      • data: Record<string, any>

      Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

      ATTENTION This reference table is for the V2 version of the schema.

      +----------------------+-----------------------------+------------------------------------------+
      | event                | input                       | output/chunk                             |
      +======================+=============================+==========================================+
      | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_start         | {'input': 'hello'}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_stream        |                             | 'Hello'                                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_end           | 'Hello human!'              |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_start       |                             |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_stream      |                             | "hello world!"                           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_start   | {"query": "hello"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_start      | {"question": "hello"}       |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
      +----------------------+-----------------------------+------------------------------------------+
      

      The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

      In addition to the standard events above, users can also dispatch custom events.

      Custom events will be only be surfaced with in the v2 version of the API!

      A custom event has following format:

      +-----------+------+------------------------------------------------------------+
      | Attribute | Type | Description                                                |
      +===========+======+============================================================+
      | name      | str  | A user defined name for the event.                         |
      +-----------+------+------------------------------------------------------------+
      | data      | Any  | The data associated with the event. This can be anything.  |
      +-----------+------+------------------------------------------------------------+
      

      Here's an example:

      import { RunnableLambda } from "@langchain/core/runnables";
      import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
      // Use this import for web environments that don't support "async_hooks"
      // and manually pass config to child runs.
      // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

      const slowThing = RunnableLambda.from(async (someInput: string) => {
      // Placeholder for some slow operation
      await new Promise((resolve) => setTimeout(resolve, 100));
      await dispatchCustomEvent("progress_event", {
      message: "Finished step 1 of 2",
      });
      await new Promise((resolve) => setTimeout(resolve, 100));
      return "Done";
      });

      const eventStream = await slowThing.streamEvents("hello world", {
      version: "v2",
      });

      for await (const event of eventStream) {
      if (event.event === "on_custom_event") {
      console.log(event);
      }
      }

      Parameters

      Returns IterableReadableStream<StreamEvent>

    • Generate a stream of events emitted by the internal steps of the runnable.

      Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

      A StreamEvent is a dictionary with the following schema:

      • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
      • name: string - The name of the runnable that generated the event.
      • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
      • tags: string[] - The tags of the runnable that generated the event.
      • metadata: Record<string, any> - The metadata of the runnable that generated the event.
      • data: Record<string, any>

      Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

      ATTENTION This reference table is for the V2 version of the schema.

      +----------------------+-----------------------------+------------------------------------------+
      | event                | input                       | output/chunk                             |
      +======================+=============================+==========================================+
      | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_start         | {'input': 'hello'}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_stream        |                             | 'Hello'                                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_end           | 'Hello human!'              |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_start       |                             |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_stream      |                             | "hello world!"                           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_start   | {"query": "hello"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_start      | {"question": "hello"}       |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
      +----------------------+-----------------------------+------------------------------------------+
      

      The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

      In addition to the standard events above, users can also dispatch custom events.

      Custom events will be only be surfaced with in the v2 version of the API!

      A custom event has following format:

      +-----------+------+------------------------------------------------------------+
      | Attribute | Type | Description                                                |
      +===========+======+============================================================+
      | name      | str  | A user defined name for the event.                         |
      +-----------+------+------------------------------------------------------------+
      | data      | Any  | The data associated with the event. This can be anything.  |
      +-----------+------+------------------------------------------------------------+
      

      Here's an example:

      import { RunnableLambda } from "@langchain/core/runnables";
      import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
      // Use this import for web environments that don't support "async_hooks"
      // and manually pass config to child runs.
      // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

      const slowThing = RunnableLambda.from(async (someInput: string) => {
      // Placeholder for some slow operation
      await new Promise((resolve) => setTimeout(resolve, 100));
      await dispatchCustomEvent("progress_event", {
      message: "Finished step 1 of 2",
      });
      await new Promise((resolve) => setTimeout(resolve, 100));
      return "Done";
      });

      const eventStream = await slowThing.streamEvents("hello world", {
      version: "v2",
      });

      for await (const event of eventStream) {
      if (event.event === "on_custom_event") {
      console.log(event);
      }
      }

      Parameters

      • input: BaseLanguageModelInput
      • options: Partial<BaseLLMCallOptions> & {
            encoding: "text/event-stream";
            version: "v1" | "v2";
        }
      • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

      Returns IterableReadableStream<Uint8Array<ArrayBufferLike>>

    • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

      Parameters

      Returns AsyncGenerator<RunLogPatch>

    • Returns Serialized

    • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

      Parameters

      Returns AsyncGenerator<string>

    • Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.

      Parameters

      • params: {
            onEnd?: (
                run: Run,
                config?: RunnableConfig<Record<string, any>>,
            ) => void | Promise<void>;
            onError?: (
                run: Run,
                config?: RunnableConfig<Record<string, any>>,
            ) => void | Promise<void>;
            onStart?: (
                run: Run,
                config?: RunnableConfig<Record<string, any>>,
            ) => void | Promise<void>;
        }

        The object containing the callback functions.

        • OptionalonEnd?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

          Called after the runnable finishes running, with the Run object.

        • OptionalonError?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

          Called if the runnable throws an error, with the Run object.

        • OptionalonStart?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

          Called before the runnable starts running, with the Run object.

      Returns Runnable<BaseLanguageModelInput, string, BaseLLMCallOptions>

    • Parameters

      • thing: any

      Returns thing is Runnable<any, any, RunnableConfig<Record<string, any>>>

    • The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.

      Implemented as a static method to support loading logic.

      Returns string