langchain.js
    Preparing search index...

    Class RunnablePassthrough<RunInput>

    A runnable to passthrough inputs unchanged or with additional keys.

    This runnable behaves almost like the identity function, except that it can be configured to add additional keys to the output, if the input is an object.

    The example below demonstrates how to use RunnablePassthrough to passthrough the input from the .invoke()`

    const chain = RunnableSequence.from([
    {
    question: new RunnablePassthrough(),
    context: async () => loadContextFromStore(),
    },
    prompt,
    llm,
    outputParser,
    ]);
    const response = await chain.invoke(
    "I can pass a single string instead of an object since I'm using `RunnablePassthrough`."
    );

    Type Parameters

    • RunInput = any

    Hierarchy (View Summary)

    Index

    Constructors

    Properties

    func?: RunnablePassthroughFunc<RunInput>
    lc_kwargs: SerializedFields
    lc_namespace: string[] = ...

    A path to the module that contains the class, eg. ["langchain", "llms"] Usually should be the same as the entrypoint the class is exported from.

    lc_runnable: boolean = true
    lc_serializable: boolean = true
    name?: string

    Accessors

    • get lc_aliases(): undefined | { [key: string]: string }

      A map of aliases for constructor args. Keys are the attribute names, e.g. "foo". Values are the alias that will replace the key in serialization. This is used to eg. make argument names match Python.

      Returns undefined | { [key: string]: string }

    • get lc_attributes(): undefined | SerializedFields

      A map of additional attributes to merge with constructor args. Keys are the attribute names, e.g. "foo". Values are the attribute values, which will be serialized. These attributes need to be accepted by the constructor as arguments.

      Returns undefined | SerializedFields

    • get lc_id(): string[]

      The final serialized identifier for the module.

      Returns string[]

    • get lc_secrets(): undefined | { [key: string]: string }

      A map of secrets, which will be omitted from serialization. Keys are paths to the secret in constructor args, e.g. "foo.bar.baz". Values are the secret ids, which will be used when deserializing.

      Returns undefined | { [key: string]: string }

    • get lc_serializable_keys(): undefined | string[]

      A manual list of keys that should be serialized. If not overridden, all fields passed into the constructor will be serialized.

      Returns undefined | string[]

    Methods

    • Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.

      Type Parameters

      • T

      Parameters

      Returns Promise<(Error | RunInput)[]>

      A promise that resolves to the output values.

    • Type Parameters

      • T

      Parameters

      • func:
            | ((input: T) => Promise<RunInput>)
            | (
                (
                    input: T,
                    config?: Partial<RunnableConfig<Record<string, any>>>,
                    runManager?: CallbackManagerForChainRun,
                ) => Promise<RunInput>
            )
      • input: T
      • Optionaloptions: Partial<RunnableConfig<Record<string, any>>> & { runType?: string }

      Returns Promise<RunInput>

    • Type Parameters

      Parameters

      • options: Partial<O> | Partial<O>[]
      • length: number = 0

      Returns Partial<O>[]

    • Default streaming implementation. Subclasses should override this method if they support streaming output.

      Parameters

      Returns AsyncGenerator<RunInput>

    • Helper method to transform an Iterator of Input values into an Iterator of Output values, with callbacks. Use this to implement stream() or transform() in Runnable subclasses.

      Type Parameters

      • I
      • O

      Parameters

      • inputGenerator: AsyncGenerator<I>
      • transformer: (
            generator: AsyncGenerator<I>,
            runManager?: CallbackManagerForChainRun,
            options?: Partial<RunnableConfig<Record<string, any>>>,
        ) => AsyncGenerator<O>
      • Optionaloptions: Partial<RunnableConfig<Record<string, any>>> & { runType?: string }

      Returns AsyncGenerator<O>

    • Assigns new fields to the dict output of this runnable. Returns a new runnable.

      Parameters

      • mapping: RunnableMapLike<Record<string, unknown>, Record<string, unknown>>

      Returns Runnable

    • Convert a runnable to a tool. Return a new instance of RunnableToolLike which contains the runnable, name, description and schema.

      Type Parameters

      Parameters

      • fields: { description?: string; name?: string; schema: InteropZodType<T> }
        • Optionaldescription?: string

          The description of the tool. Falls back to the description on the Zod schema if not provided, or undefined if neither are provided.

        • Optionalname?: string

          The name of the tool. If not provided, it will default to the name of the runnable.

        • schema: InteropZodType<T>

          The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.

      Returns RunnableToolLike<
          InteropZodType<ToolCall<string, Record<string, any>> | T>,
          RunInput,
      >

      An instance of RunnableToolLike which is a runnable that can be used as a tool.

    • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

      Parameters

      • inputs: RunInput[]

        Array of inputs to each batch call.

      • Optionaloptions:
            | Partial<RunnableConfig<Record<string, any>>>
            | Partial<RunnableConfig<Record<string, any>>>[]

        Either a single call options object to apply to each batch call or an array for each call.

      • OptionalbatchOptions: RunnableBatchOptions & { returnExceptions?: false }
        • OptionalmaxConcurrency?: number

          Pass in via the standard runnable config object instead

        • OptionalreturnExceptions?: boolean
        • OptionalreturnExceptions?: false

          Whether to return errors rather than throwing on the first one

      Returns Promise<RunInput[]>

      An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

    • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

      Parameters

      • inputs: RunInput[]

        Array of inputs to each batch call.

      • Optionaloptions:
            | Partial<RunnableConfig<Record<string, any>>>
            | Partial<RunnableConfig<Record<string, any>>>[]

        Either a single call options object to apply to each batch call or an array for each call.

      • OptionalbatchOptions: RunnableBatchOptions & { returnExceptions: true }
        • OptionalmaxConcurrency?: number

          Pass in via the standard runnable config object instead

        • OptionalreturnExceptions?: boolean
        • returnExceptions: true

          Whether to return errors rather than throwing on the first one

      Returns Promise<(Error | RunInput)[]>

      An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

    • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

      Parameters

      • inputs: RunInput[]

        Array of inputs to each batch call.

      • Optionaloptions:
            | Partial<RunnableConfig<Record<string, any>>>
            | Partial<RunnableConfig<Record<string, any>>>[]

        Either a single call options object to apply to each batch call or an array for each call.

      • OptionalbatchOptions: RunnableBatchOptions
        • OptionalmaxConcurrency?: number

          Pass in via the standard runnable config object instead

        • OptionalreturnExceptions?: boolean

      Returns Promise<(Error | RunInput)[]>

      An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

    • Parameters

      • Optionalsuffix: string

      Returns string

    • Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.

      Returns Runnable<RunInput[], RunInput[], RunnableConfig<Record<string, any>>>

      This will be removed in the next breaking release.

    • Pick keys from the dict output of this runnable. Returns a new runnable.

      Parameters

      • keys: string | string[]

      Returns Runnable

    • Generate a stream of events emitted by the internal steps of the runnable.

      Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

      A StreamEvent is a dictionary with the following schema:

      • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
      • name: string - The name of the runnable that generated the event.
      • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
      • tags: string[] - The tags of the runnable that generated the event.
      • metadata: Record<string, any> - The metadata of the runnable that generated the event.
      • data: Record<string, any>

      Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

      ATTENTION This reference table is for the V2 version of the schema.

      +----------------------+-----------------------------+------------------------------------------+
      | event                | input                       | output/chunk                             |
      +======================+=============================+==========================================+
      | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_start         | {'input': 'hello'}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_stream        |                             | 'Hello'                                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_end           | 'Hello human!'              |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_start       |                             |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_stream      |                             | "hello world!"                           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_start   | {"query": "hello"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_start      | {"question": "hello"}       |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
      +----------------------+-----------------------------+------------------------------------------+
      

      The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

      In addition to the standard events above, users can also dispatch custom events.

      Custom events will be only be surfaced with in the v2 version of the API!

      A custom event has following format:

      +-----------+------+------------------------------------------------------------+
      | Attribute | Type | Description                                                |
      +===========+======+============================================================+
      | name      | str  | A user defined name for the event.                         |
      +-----------+------+------------------------------------------------------------+
      | data      | Any  | The data associated with the event. This can be anything.  |
      +-----------+------+------------------------------------------------------------+
      

      Here's an example:

      import { RunnableLambda } from "@langchain/core/runnables";
      import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
      // Use this import for web environments that don't support "async_hooks"
      // and manually pass config to child runs.
      // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

      const slowThing = RunnableLambda.from(async (someInput: string) => {
      // Placeholder for some slow operation
      await new Promise((resolve) => setTimeout(resolve, 100));
      await dispatchCustomEvent("progress_event", {
      message: "Finished step 1 of 2",
      });
      await new Promise((resolve) => setTimeout(resolve, 100));
      return "Done";
      });

      const eventStream = await slowThing.streamEvents("hello world", {
      version: "v2",
      });

      for await (const event of eventStream) {
      if (event.event === "on_custom_event") {
      console.log(event);
      }
      }

      Parameters

      • input: RunInput
      • options: Partial<RunnableConfig<Record<string, any>>> & { version: "v1" | "v2" }
      • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

      Returns IterableReadableStream<StreamEvent>

    • Generate a stream of events emitted by the internal steps of the runnable.

      Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

      A StreamEvent is a dictionary with the following schema:

      • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
      • name: string - The name of the runnable that generated the event.
      • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
      • tags: string[] - The tags of the runnable that generated the event.
      • metadata: Record<string, any> - The metadata of the runnable that generated the event.
      • data: Record<string, any>

      Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

      ATTENTION This reference table is for the V2 version of the schema.

      +----------------------+-----------------------------+------------------------------------------+
      | event                | input                       | output/chunk                             |
      +======================+=============================+==========================================+
      | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_start         | {'input': 'hello'}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_stream        |                             | 'Hello'                                  |
      +----------------------+-----------------------------+------------------------------------------+
      | on_llm_end           | 'Hello human!'              |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_start       |                             |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_stream      |                             | "hello world!"                           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_start   | {"query": "hello"}          |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_start      | {"question": "hello"}       |                                          |
      +----------------------+-----------------------------+------------------------------------------+
      | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
      +----------------------+-----------------------------+------------------------------------------+
      

      The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

      In addition to the standard events above, users can also dispatch custom events.

      Custom events will be only be surfaced with in the v2 version of the API!

      A custom event has following format:

      +-----------+------+------------------------------------------------------------+
      | Attribute | Type | Description                                                |
      +===========+======+============================================================+
      | name      | str  | A user defined name for the event.                         |
      +-----------+------+------------------------------------------------------------+
      | data      | Any  | The data associated with the event. This can be anything.  |
      +-----------+------+------------------------------------------------------------+
      

      Here's an example:

      import { RunnableLambda } from "@langchain/core/runnables";
      import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
      // Use this import for web environments that don't support "async_hooks"
      // and manually pass config to child runs.
      // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

      const slowThing = RunnableLambda.from(async (someInput: string) => {
      // Placeholder for some slow operation
      await new Promise((resolve) => setTimeout(resolve, 100));
      await dispatchCustomEvent("progress_event", {
      message: "Finished step 1 of 2",
      });
      await new Promise((resolve) => setTimeout(resolve, 100));
      return "Done";
      });

      const eventStream = await slowThing.streamEvents("hello world", {
      version: "v2",
      });

      for await (const event of eventStream) {
      if (event.event === "on_custom_event") {
      console.log(event);
      }
      }

      Parameters

      • input: RunInput
      • options: Partial<RunnableConfig<Record<string, any>>> & {
            encoding: "text/event-stream";
            version: "v1" | "v2";
        }
      • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

      Returns IterableReadableStream<Uint8Array<ArrayBufferLike>>

    • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

      Parameters

      Returns AsyncGenerator<RunLogPatch>

    • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

      Parameters

      Returns AsyncGenerator<RunInput>

    • Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.

      Parameters

      • params: {
            onEnd?: (
                run: Run,
                config?: RunnableConfig<Record<string, any>>,
            ) => void | Promise<void>;
            onError?: (
                run: Run,
                config?: RunnableConfig<Record<string, any>>,
            ) => void | Promise<void>;
            onStart?: (
                run: Run,
                config?: RunnableConfig<Record<string, any>>,
            ) => void | Promise<void>;
        }

        The object containing the callback functions.

        • OptionalonEnd?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

          Called after the runnable finishes running, with the Run object.

        • OptionalonError?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

          Called if the runnable throws an error, with the Run object.

        • OptionalonStart?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

          Called before the runnable starts running, with the Run object.

      Returns Runnable<RunInput, RunInput, RunnableConfig<Record<string, any>>>

    • A runnable that assigns key-value pairs to the input.

      The example below shows how you could use it with an inline function.

      Type Parameters

      • RunInput extends Record<string, unknown> = Record<string, unknown>
      • RunOutput extends Record<string, unknown> = Record<string, unknown>

      Parameters

      Returns RunnableAssign<RunInput, RunInput & RunOutput>

      const prompt =
      PromptTemplate.fromTemplate(`Write a SQL query to answer the question using the following schema: {schema}
      Question: {question}
      SQL Query:`);

      // The `RunnablePassthrough.assign()` is used here to passthrough the input from the `.invoke()`
      // call (in this example it's the question), along with any inputs passed to the `.assign()` method.
      // In this case, we're passing the schema.
      const sqlQueryGeneratorChain = RunnableSequence.from([
      RunnablePassthrough.assign({
      schema: async () => db.getTableInfo(),
      }),
      prompt,
      new ChatOpenAI({ model: "gpt-4o-mini" }).withConfig({ stop: ["\nSQLResult:"] }),
      new StringOutputParser(),
      ]);
      const result = await sqlQueryGeneratorChain.invoke({
      question: "How many employees are there?",
      });
    • Parameters

      • thing: any

      Returns thing is Runnable<any, any, RunnableConfig<Record<string, any>>>

    • The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.

      Implemented as a static method to support loading logic.

      Returns string