langchain.js
    Preparing search index...

    Exposes Rockset's vector store/search functionality

    Hierarchy (View Summary)

    Index

    Constructors

    • Constructs a new RocksetStore

      Parameters

      • embeddings: EmbeddingsInterface

        Object used to embed queries and page content

      • args: RocksetLibArgs

      Returns RocksetStore

    Properties

    client: MainApi
    collectionName: string
    embeddingKey: string
    filter?: string
    FilterType: string
    textKey: string
    workspaceName: string

    Accessors

    • get similarityMetric(): SimilarityMetric

      Returns SimilarityMetric

    • set similarityMetric(metric: SimilarityMetric): void

      Parameters

      Returns void

    Methods

    • Gets a string representation of the type of this VectorStore

      Returns "rockset"

    • Embeds and adds Documents to the store.

      Parameters

      • documents: Document[]

        The documents to store

      Returns Promise<undefined | string[]>

      The _id's of the documents added

    • Adds vectors to the store given their corresponding Documents

      Parameters

      • vectors: number[][]

        The vectors to store

      • documents: Document[]

        The Documents they represent

      Returns Promise<undefined | string[]>

      The _id's of the added documents

    • Deletes Rockset documements given their _id's

      Parameters

      • ids: string[]

        The IDS to remove documents with

      Returns Promise<void>

    • Deletes the collection this RocksetStore uses

      Parameters

      • OptionalwaitUntilDeletion: boolean

        Whether to sleep until the collection is ready to be queried

      Returns Promise<void>

    • Gets the most relevant documents to a query along with their similarity score. The returned documents are ordered by similarity (most similar at the first index)

      Parameters

      • query: number[]

        The embedded query to search the store by

      • k: number

        The number of documents to retreive

      • Optionalfilter: string

        The SQL WHERE clause to filter by

      Returns Promise<[Document, number][]>

    • Constructs, adds docs to, and returns a RocksetStore object

      Parameters

      • docs: Document[]

        The Documents to store

      • embeddings: EmbeddingsInterface

        The object used to embed queries and page content

      • dbConfig: RocksetLibArgs

        The options to be passed into the RocksetStore constructor

      Returns Promise<RocksetStore>

    • Constructs and returns a RocksetStore object given texts to store.

      Parameters

      • texts: string[]

        The texts to store

      • metadatas: object | object[]

        The metadatas that correspond to

      • embeddings: EmbeddingsInterface

        The object used to embed queries and page content

      • dbConfig: RocksetLibArgs

        The options to be passed into the RocksetStore constructor

      Returns Promise<RocksetStore>

    • Creates a new Rockset collection and returns a RocksetStore that uses it

      Parameters

      • embeddings: EmbeddingsInterface

        Object used to embed queries and page content

      • dbConfig: RocksetLibArgs

        The options to be passed into the RocksetStore constructor

      • OptionalcollectionOptions: CreateCollectionRequest

        The arguments to sent with the HTTP request when creating the collection. Setting a field mapping that VECTOR_ENFORCEs is recommended when using this function. See https://rockset.com/docs/vector-functions/#vector_enforce

      Returns Promise<RocksetStore>