Return the string type key uniquely identifying multi or single action agents.
Return the string type key uniquely identifying this class of agent.
Constructs the agent scratchpad based on the agent steps. It returns an array of base messages representing the thoughts of the agent.
The agent steps to construct the scratchpad from.
An array of base messages representing the thoughts of the agent.
Name of tool to use to terminate the chain.
Prefix to append the LLM call with.
Prefix to append the observation with.
Decide what to do given some input.
Steps the LLM has taken so far, along with observations from each.
User inputs.
OptionalcallbackManager: anyCallback manager to use for this call.
Action specifying what tool to use.
Prepare the agent for output, if needed
Return response when agent has been stopped due to max iterations
OptionalcallbackManager: anyStaticcreateCreate prompt in the style of the ChatConversationAgent.
List of tools the agent will have access to, used to format the prompt.
Optionalargs: ChatConversationalCreatePromptArgsArguments to create the prompt with.
Interface defining the structure of arguments used to create a prompt for the ChatConversationalAgent class.
OptionalhumanMessage?: stringString to put before the list of tools.
OptionalinputVariables?: string[]List of input variables the final prompt will expect.
OptionaloutputParser?: AgentActionOutputParserOutput parser to use for formatting.
OptionalsystemMessage?: stringString to put after the list of tools.
StaticdeserializeLoad an agent from a json-like object describing it.
StaticfromCreates an instance of the ChatConversationalAgent class from a BaseLanguageModel and a set of tools. It takes optional arguments to customize the agent.
The BaseLanguageModel to create the agent from.
The set of tools to create the agent from.
Optionalargs: ChatConversationalCreatePromptArgs & AgentArgsOptional arguments to customize the agent.
An instance of the ChatConversationalAgent class.
StaticgetReturns the default output parser for the ChatConversationalAgent class. It takes optional fields as arguments to customize the output parser.
Optionalfields: OutputParserArgs & { toolNames: string[] }Optional fields to customize the output parser.
The default output parser for the ChatConversationalAgent class.
Staticlc_StaticvalidateValidate that appropriate tools are passed in
Agent for the MRKL chain.